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ABSTRACT

SEARCH FOR THE ISOVECTOR GIANT MONOPOLE RESONANCE VIA
THE 28SI(10BE,10B+γ) REACTION AT 100 MEV/U

By

Michael J. Scott

The isovector giant monopole resonance (IVGMR) is a fundamental mode of collective

oscillation in which the neutron and proton fluids in a nucleus radially expand and con-

tract in an out-of-phase manner. Observation of the IVGMR has been difficult. The non-

spin-transfer IVGMR resonance is obscured by its spin-transfer counterpart, the isovector

spin giant monopole resonance (IVSGMR). The problem is the lack of a suitable probe for

measurement of non-spin-transfer, isovector events. By way of the (10Be,10B+γ) charge-

exchange reaction, selectivity for the excitation of the IVGMR can be gained. Isolation

of ∆S = 0, ∆T = 1 reactions is achieved through excitation of the superallowed Fermi

transition 10Be(0+,g.s.)→10B(0+
1 , 1.74 MeV,∆T = 1), which is detected by observation of

the 1022 keV gamma ray from the deexctation of the isobaric analogue state in 10B to the

10B(1+
1 , 0.718 MeV) state. The applicability of this probe in separation of ∆S = 0, ∆T = 1

reactions is observed with data taken on a 12C target through selectivity in observation of the

12C(0+,g.s.)→12B(1+,g.s.) transition, which is ∆S = 1 by definition. IVGMR strength in

28Al is identified using the the 28Si(10Be,10B+γ) reaction at E(10Be)=1000 MeV. Isovector

monopole strength is observed up to Ex(28Al)=30 MeV. The observed non-energy weighted

sum rule strength for peaks at 9 and 21 MeV is determined to be 66± 36% and 59± 32%,

respectively. Exctracted IVGMR and isovector giant dipole resonance distributions are also

compared with results from calculations in the charge-exchange relativistic time blocking

approximation.



To Lulu - Reaching your dream begins with a single step. The path may be long, but
your diligence will serve you.
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Chapter 1

Introduction

In nuclear charge exchange reactions, a probe inelastically scatters from a target nucleus

while exchanging a neutron for a proton, or vice-versa, leaving the residual target nucleus in

an excited state. The interaction of the probe with the target can cause resonant oscillations

that involve a large fraction of the nucleons, referred to as giant resonances. The strength

of a giant resonance depends on the size of the system and the number of particles able to

participate, and is limited by a sum rule. For a resonance to be considered a giant resonance

(GR), the observed strength of resonance should exhaust about 50% or more of the associated

sum rule.

First evidence of GRs was obtained by Bothe and Gentner [2] in the 1930’s through

observation of strong resonant structure in nuclei via photoabsorption of 17 MeV photons

produced by bombarding protons onto a 7Li target. In 1944, Migdal gave the first theo-

retical description of the electric dipole resonances [3]. In the subsequent years, theoretical

descriptions of GRs progressed (see Section 3) and systematic studies of the isovector giant

dipole resonance (IVGDR) were underway ([4] and references therein). About 30 years after

the first observation of the IVGDR, observation of the isoscalar giant quadrupole resonance

(ISGQR) [5, 6] was realized, showing GRs were not solely isovector in nature. Since then,

effort has been put forth to identify many other GR modes. A detailed history can be found

in Reference [1].

Intuitively, GRs can be described as shape oscillations of the nuclear fluid in a hydrody-
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Figure 1.1 Schematic representation of various collective modes. Multipoles shown corre-
spond to ∆L = 0 (monopole), ∆L = 1 (dipole), and ∆L = 2 (quadrupole). Figure taken
from [1].

namical model, as depicted in Figure 1.1. In this picture, the multipolarity of the excitation

(described by the number of units of angular momentum transferred; ∆L) gives rise to the

shape/density deformation of the nucleus. The simplest mode of excitation, the isoscalar

giant monopole resonance (ISGMR), is described by radial oscillations of the nucleus with

proton and neutron densities oscillating in phase, referred to as a breathing mode. The

spin degrees of freedom may also be excited by a unit transfer of spin angular momentum

(∆S = 1). Similar to the ISGMR, the isoscalar spin giant monopole resonance (ISSGMR)

oscillated in a radial, breathing mode, but the transfer of spin causes the spin up(down)

protons and neutrons to oscillate out-of-phase with the spin down(up) protons and neu-

trons. Lastly, isospin degrees of freedom can be excited through a unit transfer of isospin
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(∆T = 1), where an excitation of this nature is referred to as isovector (IV). The simplest

isovector mode is the isovector giant monopole resonance (IVGMR), where again the nucleus

is described by radial, “breathing” oscillations, but the proton and neutron densities oscillate

out-of-phase. By combining different unit transfers of orbital angular momentum (L), spin

(S), and isospin (T ), the more complex GRs depicted in Figure 1.1 are described. A more

detailed overview of GRs can be found in Chapter 3.

The goal of this study is to measure the IVGMR. Similar to the ISGMR, the IVGMR is

a breathing mode, but proton and neutron densities oscillate out-of-phase. It can provide

valuable information on nuclear structure and Coulomb effects relating to, for example,

isospin-symmetry breaking from the Coulomb force [7]. Detailed information about the

IVGMR similar to what is known for the ISGMR [8, 9], will add to our understanding of

the nuclear equation of state and other macroscopic properties of nuclei and nuclear matter,

such as the incompressibility.

The IVGMR has been difficult to study in detail in experiments. Principally, the issue

has been that the various GR modes appear either directly on top of each other in excitation

energy, or near enough to each other to obscur the resonance of interest. The solution is to

find a suitable method to selectively probe for IVGMR strength.

To dissentangle each GR from others, each unit of quantum number transfer (T , L, S)

needs to be determined. To separate isoscalar GRs from isovector GRs, CE reactions serve

a useful role, where the probing reaction is of the nature (π±, π0) or (A(N,Z),A(N±1,Z∓1)).

The multipolarity of the reaction can be separated by the shape of the angular distribution

(differential cross-section versus scattering angle) in what is called a multipole decomposi-

tion analysis. Lastly, isolation of non-spin-flip excitations from spin-flip has often utilized

structural effects of the reaction mechanism to determine the spin nature of the resonance,
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and for isovector GR reactions, a suitable probe system has been difficult to identify.

The most convincing results for the IVGMR has come from π-charge-exchange reactions

[10, 11]. This method utilized the spinless nature of the π-mesons such that spin-flip tran-

sitions were not excited. Though a portion of the spectra identified in these reactions was

attributed to the IVGMR, due to the treatment of the large non-resonant background, upon

which the relatively small IVGMR sits, the results are somewhat tenuous (see Section 2.1).

To unambiguously identify the IVGMR in this study, we have used the (10Be,10B+γ(1.022

MeV)) probe system. The novelty of this probe lies in the superallowed Fermi (∆S =

0) transition 10Be(0+,g.s.)→10B(0+,1.74 MeV) which does not suffer from a large amount

of feeding from higher energy excitations in 10B. By measuring the emmitted 1.022 MeV

gamma-ray from the de-excitation of the 1.74 MeV state in coincident with the 10B ejectile,

isovector-non-spin-flip excitations can cleanly be isolated (see Sections 2.1 and 4.3.1). From

the data obtained in the coincidence measurement, a multipole decomposition analysis can

be performed to isolate a ∆T = 1, ∆S = 0, ∆L = 0 spectrum for the observation of the

IVGMR.
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Chapter 2

Experimental Considerations for the

Isovector Non-Spin-Flip Monopole

Resonance

In this chapter, the technical details of the identification of the IVGMR in 28Al via the

28Si(10Be,10B+γ(1.022 MeV)) reactions are discussed. Of the many GR modes, this study

is focused on developing a tool for measuring the IVGMR. The IVGMR is an excitation over

two major oscillator shells (labeled 2~ω, where ~ω describes the energy of the excitation)

associated with the operator charge exchange (CE) r2τ (where τ medaites the CE excitation)

and is mediated by neutron-particle, proton-hole excitations (for ∆TZ = +1 CE reactions)

over two major oscillator shells [12], as illustrated in Figure 2.1. It resides in the continuum

region of the nucleus and has a large width (Γ ∼ 10 MeV). Since the IVGMR is an out-of-

phase oscillation of proton and neutron densities, a deeper understanding of the isovector

nature of effective nuclear forces can be obtained for spherical nuclei [13]. However, there

is a dearth of experimental data on the IVGMR, despite its potentially close relation to

asymmetric nuclear matter and isospin mixing in nuclei.

The use of heavy ions in charge exchange reactions has allowed many studies of the

isovector response in nuclei. With advances in rare isotope beams at intermediate energies,
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Figure 2.1 Illustrations of particle-hole contributions to the IVGMR in the 28Si→ 28Al
system. The horizontal gray dashed line represents the Fermi level, up to which the particles
fill the ground state. The IVGMR is a coherent superposition of the excitations highlighted
with green arrows.

a large array of probes are available of different spin and isospin, allowing increased selectivity

in reaction channel. In this study, we propose to use the (10Be,10B+γ) heavy-ion charge

exchange probe to isolate (∆S = 0, ∆T = 1) reactions for observation of the IVGMR.

2.1 Probing for the IVGMR

Multiple attempts have been made to measure the IVGMR, with an array of probes. A first

experiment aimed at identifying isovector resonances was performed on a series of targets

using pion CE probes [10]. The (π±, π0) reaction is a good candidate probe for IVGMR

studies because of its selectivity of (∆S = 0,∆T = 1) transitions. Since the π0 decays to
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Figure 2.2 Transition density multiplied by r2 for excitation of the IVGMR in 28Al from
28Si. Probing the IVGMR is preferably done using a probe that is strongly absorbed at
the surface (as schematically indicated by the shaded area), to avoid the cancellation of the
transition strengths due to the exterior and interior components of the transition density.

two gamma-rays, the measurement of the reaction is a coincidence observation between the

two gammas of ≈100 MeV. Spectra taken on 40Ca is shown in Figure 2.3. The spectra

are decomposed into the IVGMR, IVGDR, and a semi-phenomenological background by

fitting Gaussians as the peaks and a convolution of a Lorentzian and Exponential decay

as the background. However, the coincident measurement of the gamma-rays led to large

experimental uncertainties. Also, a weak structure identified as the IVGMR appeared on

top of a large background, making interpretation of the result tenuous.

Further studies were performed using nuclear CE probes, such as (13C,13N) [14, 15]

and (7Li,7Be+γ) [16]. The most promising results for the IVGMR using nuclear probes

have come from heavy-ion charge exchange probes, rather than light probes such as the

(p, n) probe. This is because the light probe will penetrate the nuclear volume rather than

strongly absorb at the nuclear surface. As the volume of the nucleus is probed, cancellation

of the strength will occur due to a node in the transition density of the reaction near the
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Figure 2.3 Previous experiment for 40Ca using the pion charge exchange reaction [10]. The
peak representing the IVGMR is indicated. To the right of the IVGMR is a peak representing
the IVGDR. The IVGMR is covered by the background component, drawn with dashed lines.
The three curves were fit to the data for extraction of the IVGMR.

nuclear surface, stemming from mass conservation and spherical symmetry of motion [17].

In the case of the (13C,13N) probe, a resonance was observed in agreement with the (π−, π0)

data on the IVGMR, but no multipole assignment could be made from the observed shape

and strength. The (7Li,7Be+γ) probe was used since coincidence measurements of the

7Be ejectile with an emitted gamma from the ejectile could be used to isolate transitions

in the target system, allowing subtraction of the isovector spin giant monopole resonance

(IVSGMR: ∆L = 0,∆S = 1,∆T = 1) from the IVGMR. Unfortunately, large uncertainties

in the ∆S = 1 subtraction and multistep contributions at low beam energy did not allow for

an assignment of multipolarity to the measured spectrum.

To reliably extract experimental information about the IVGMR, three conditions must

be met:
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1) The probe must provide a clean ∆S = 0, ∆T = 1 filter. This is critical for ensuring

that the IVGMR (∆L = 0,∆S = 0,∆T = 1, mediated by the operator r2τ) signal is

not contaminated by the excitation of its spin-flip partner, the 2~ω IVSGMR (∆L =

0,∆S = 1,∆T = 1, mediated by the operator r2στ) or the 0~ω Gamow-Teller (GT)

(∆L = 0,∆S = 1,∆T = 1, mediated by the operator στ) excitation, and which otherwise

cannot be separated from the IVGMR.

2) A clean single-step CE mechanism must be ensured to allow for the accurate theoretical

description of the differential cross-sections, necessary for identification of the multipo-

larity of spectrum strength. To ensure single-step CE reactions are safely dominant,

Reference [18] shows that this is true for incident energies of ∼100 MeV/u and above.

Below that, multistep processes (sequential nucleon-pickup, nucleon-stripping, or vice-

versa) can contribute, complicating the interpretation of the data.

3) The probe must be strongly absorbed at the nuclear surface. Due to the operator medi-

ating the excitation of the IVGMR (r2τ), there is a node in the transition density near

the nuclear surface (see Figure 2.2). Probes penetrating the interior of the target nucleus

include cancellation of the transition strength. Thus a surface absorbed probe is ideal

[19].

The (10C,10B+γ) probe was recently implemented to satisfy these conditions to measure

the IVGMR [20]. The heavy-ion charge exchange probe was impinged upon a reaction

target with a beam energy of 200 MeV/u, satisfying conditions 2) ans 3). A super-allowed

Fermi transition in the probe system [10C(0+,g.s.)→10B(0+
1,1.740 MeV), mediated by the

operator τ ], decays completely by gamma emission of a 1022 keV gamma-ray, and serves

as a coincident tag between the emitted gamma and the 10B ejectile for ∆S = 0, ∆T = 1
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Figure 2.4 The level scheme of 10B of relevance for the (10Be,10B+γ) reaction to isolate
∆S = 0 transitions. The 10Be(0+, T = 1, g.s.) →10B(0+, T = 1, 1.74 MeV) transition is
accompanied by a 1.022 MeV gamma-ray from deexcitation to the 0.718 MeV 1+ state.

reaction to satisfy condition 1). With data taken on a 90Zr and 7Li target, spectra were

obtained for isovector, non-spin-transfer reactions, which were decomposed by multipolarity.

However, measurement of the IVGMR was not achieved in this study due to low statistics

and low gamma-ray energy resolution of the data set.

2.2 The (10Be,10B+γ) Probe for Isovector Non-Spin-

Flip Excitations

Given the shown efficacy of the (10C,10B+γ) probe [20], the (10Be,10B+γ) probe was used

in this study. The (10Be,10B+γ) probe works much like its counterpart, the (10C,10B+γ)

probe, but in the ∆Tz = 1 direction. Since isolation of the IVGMR requires a ∆S = 0,

∆T = 1 probe, CE reactions connecting isobaric analogue states (IAS) via a super allowed

Fermi transition in the projectile, with negligible feeding from higher lying spin-transfer

reactions, are ideal.

Of the light nuclei which are potential probes, the CE reaction to the 10B(IAS) is ideal.
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Figure 2.5 Gamma-ray spectrum with Doppler correction in the 90Zr(10C,10B) reaction [20].

This is because reactions to the 10B(IAS) have small to negligible contributions from highly

excited GT states that could contaminate the non-spin-flip signal, as opposed to other re-

actions considered, such as (14O,14N(IAS)) and (18N,18F(IAS) [20]. Figure 2.4 shows the

(10Be,10B) probe system, with the IAS transition to the 1.74 MeV level in 10B highlighted

in red. At the experimental beam energy (100 MeV/u), isovector spin-transfer reactions

are more strongly excited than isovector non-spin-transfer reactions ([21], see Section 4.3.1).

The first excited state in 10B is the 0.718 MeV 1+ level with a strong GT transition strength

of B(GT ) = 3.51 [22].

For the probe to provide a clean ∆S = 0, ∆T = 1 signal, feeding from higher-lying states

must be minimal. Below the α decay threshold of 4.66 MeV in 10B, two states exist above

the 1.74 MeV state. The state 414 keV above the 1.74 MeV state can be populated by GT

transitions from the ground state of 10Be. However, the transition strength is known to be
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Intensity of 10Be beam 3.9x106

Target Thickness 35.35 mg/cm2 (92% 28Si)
γ-ray Efficiency (1.022 MeV) 9.1%
Cross-Section 5 µb (θc.o.m. < 1◦) 10 µb (θc.o.m. < 5◦)
Event Rate per day for IVGMR 160 day−1 280 day−1

Table 2.1 Event rates and inputs to calculation. Calculations were performed for cross-
sections up to 1◦ and 5◦ scattering angle in the center-of-mass. See text for calculation.

small (B(GT ) < 0.007 [23]) and does not completely decay to the 1.74 MeV state. The

3.59 MeV state is weakly populated, and decays to the 1.74 MeV state with a branching of

< 0.03%. As such, contamination of the isovector non-spin-transfer signal is expected to be

small. Figure 2.5 shows the Doppler-corrected spectrum measured in Reference [20] for the

(10C,10B+γ) probe, and does not show signs of contamination.

To experimentally isolate ∆S = 0, ∆T = 1 reactions using the (10Be,10B+γ) reaction,

the 10Be projectile reacts with a target nucleus, leaving the reacted projectile (ejectile) 10B∗

in an excited state, which upon decay by gamma emission serves as a tag for the reaction.

The gamma energy of interest is 1022 keV, which comes from 10B being populated in the 1.74

MeV state and decaying to the 0.718 MeV state. The coincidence observation of the 1022

MeV gamma with 10B serves as the isovector non-spin-transfer tag. This measurement then

indicates a 0+ → 0+ isovector non-spin-transfer reaction occurring in the target nucleus.

2.3 Target Selection and Considerations

2.3.1 28Si

For this experiment, we chose 28Si as the reaction target. This is a relatively light nucleus

for GR studies, but the reported attainable beam intensity for 10Be required using a lighter
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Estimated contributions to excitation energy

resolution (FWHM) in 28Al (MeV)

Reconstructed Energy of 10B particles 1.0
Energy Loss Difference Through Target 2.0

Recoil Due to γ-emission form 10B 1.0

Overall 2.5

Table 2.2 Estimated excitation-energy resolution in 28Al via the 28Si(10Be,10B +γ(1022
MeV)) reaction. The reconstructed energy of the 10B particles in the S800 spectrograph
at NSCL [24, 25] includes a conservative estimate for the quality of dispersion matching.
The contribution to the resolution due to recoil of 28Al by decay-in-flight by gamma emis-
sion includes contributions from both the 1.022 MeV (0+→1+) and subsequent 0.718 MeV
(1+→3+) transitions as indicated in Figure 2.4. The contribution from the energy loss differ-
ence through the target accounts for the fact that the energy losses of 10Be and 10B particles
in the target differ and the reaction point in the target is unknown.

nucleus to achieve a suitable count rate.

Table 2.1 shows the expected count rate for the 28Si target with the estimates used on

beam intensity, gamma-efficiency, and cross-section for target selection. The beam intensity

is the reported value form the Nation Superconducting Cyclotron Laboratory (NSCL) beam

isotope list [26]. The beam rate on target was estimated as

I = 2.86× 104 pps/pnA from LISE++ [27]

× 3 (empirical scaling factor)

× 0.3 (estimated transmission to S800)

× 150 pnA (NSCL beam list) [26]

= 3.9× 106 pps. (2.1)

The 35.35 mg/cm2 natSi (92.2% 28Si) target was chosen for attaining acceptable count rates.

The gamma-ray efficiency was estimated for all 7 GRETINA detectors placed at 90◦ around
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the target using the simulation from Reference [28]. The estimated cross-section was obtained

based on distorted wave Born approximation calculations (see Chapter 4). The event rate

per day was calculated as

Y = N(28Si)×BI(10Be)× ε× σ (2.2)

where N(28Si) = (target thickness, mg/cm2) × (NA, Avagadro’s number)/ρ(28Si), ρ(28Si)

is the density of 28Si, BI(10Be) is the beam intensity of 10Be, ε is the gamma-detection

efficiency, and σ is the cross-section. The estimated yield is calculated up to 1◦ for the

forward peaking IVGMR, and up to the S800’s acceptance limit of about 5◦.

Tables 2.1 and 2.2 show the choice of 28Si is based upon obtaining a strong yield for the

IVGMR, given restrictions on beam intensity and target thickness. Since the beam intensity

cannot be significantly raised, we looked to the relatively light 28Si nucleus for an optimal

cross-section. When addressing the thickness of the target, there are two competing factors:

yield and excitation energy resolution. A thicker target will increase yield, with a loss in

energy resolution, and vice versa. As shown in Figure 2.1, 28Si is the heaviest stable nucleus

in which all proton orbits can participate in the IVGMR. Also, since the 0~ω IAS cannot be

excited, all ∆L = 0, ∆S = 0, ∆T = 1 strength can be assigned to the 2~ω IVGMR.

2.3.2 12C

In this experiment, a 12C target was also chosen as an excellent test case for the suitability of

the probe, due to the strong GT(∆L = 0, ∆S = 1, ∆T = 1) transition 12C(0+,g.s.)→12B(0+,g.s.).

Figure 2.7 is the measured spectrum of the 12C(t,3He)12B charge-exchange reaction from

Reference [29], showing the peak of the 12B ground state transition of interest. As can be
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seen in Figure 2.6 and 2.7, the transition of interest at 0 MeV is separated from the first

excited state by 0.953 MeV, so it will appear relatively well separated from the excited states

in 12B other than some contamination from the 2+
1 state in 12B, assuming the resolution

estimated in Table 2.2.

The strongly excited ground state to ground state transition in 12C→12B is ∆Jπ = 1+, so

by the rules of angular momentum transfer, contributing reactions will be ∆S = 1, ∆L = 0

and ∆S = 1, ∆L = 2 in nature. This means that a measurement of the 12C(10Be,10B+γ)12B

reaction can show the efficacy of the probe by selectively isolating ∆S = 0 or ∆S = 1

reactions, and would be indicated by this strong ground state peak not being present.
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Figure 2.7 Excitation energy spectrum for the 12C(t,3He reaction at 115 MeV/u. Of
interest for this study is the strong peak at 0 MeV in the 12B spectrum from the
12C(0+,g.s.)(t,3He)12B(1+,g.s.). Graphic adapted from [29]
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Chapter 3

Theoretical Description of Giant

Resonances

To adequately relate the measured IVGMR to useful structural information, robust the-

oretical models are necessary. Calculations proceed in either macroscopic or microscopic

frameworks to describe giant resonances. In Section 3.1, a brief description of the macro-

scopic picture is given to highlight this illustrative picture of the GR phenomena. In Section

3.2, a short overview of the ingredients of the microscopic calculations are given to illustrate

more clearly the strength limiting sum rule and the origin of the width of the resonance.

3.1 Macroscopic Picture

In the macroscopic picture, the nucleus is portrayed as a liquid drop of proton and neutron

fluids where a GR is described as a small-amplitude collective oscillation about the nuclear

equilibrium as illustrated in Figure 1.1. The macroscopic description of GRs provides an

intuitive picture of GRs to relate to bulk properties of the nucleus. The shape vibrations are

of small amplitude, and can be surface-vibrations, compressional vibrations, or a superposi-

tion of both modes. In the surface-vibrations, harmonic vibrations about a mean spherical

shape are assumed. For the compressional vibrations, it is easiest to picture the surface

nucleons as having a fixed position and the harmonic vibration is in the nuclear density. Full
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Figure 3.1 (a) Data obtained for the ISGMR via inelastic scattering of α particles at small
angles from Reference [32]. The solid line represents the location of the ISGMR as a function
of mass (A) from Reference [30], and the dashed line represents an improvement from to the
estimate with better knowledge of the nuclear incomressibility term from References [8, 9].
(b) Data obtained for the IVGMR from pion scattering from References [10, 11]. The solid
line represents an initial estimate from the hydrodynamical model, and the dashed line
represents the improvements to the model when including surface effects [33].

theoretical descriptions of surface-vibrations and compressional vibrations for GRs can be

found in References [30] and [31], respectively.

The simplest vibrational GR mode is the isoscalar giant monopole resonance (ISGMR)

and has been well studied since 1977, yielding insights into bulk properties of the nucleus

such as the incomressibility of nuclear matter (KNM ) since KNM ∝ E2
X(IVGMR) [8, 9].

A first estimation of the location in excitation energy of the ISGMR was performed by

Bohr and Mottelson for compressional modes of nuclei for small oscillations in density of the
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nucleus around an equilibrium [30]. They determined the energy of an isoscalar resonance

as a function of nuclear mass (A) to be

EnL =
~knL
1.2

√
KNM

9m
A−1/3 MeV (3.1)

where knL are the eigenvalues of the motion for principle quantum number n and multipo-

larity L, KNM is the incomressibility of nuclear matter, and m is the nucleon mass. At the

time of derivation, KNM was not known, and was estimated to be KNM = 135 MeV [17].

This gave the solution for the ISGMR (n = 1, L = 0) to be

EISGMR
X = 65A−1/3 MeV. (3.2)

As experimental information became available, it was determined that KNM = 231±5 MeV

[8, 9]. This moves the predicted position of the ISGMR from Equation 3.2 to be defined as

EISGMR
X = 85A−1/3 MeV. (3.3)

Figure 3.1(a) compares data obtained for the ISGMR for a range of nuclear masses to the

expected positions of the ISGMR predicted by Equations 3.2 and 3.3. By using the correct

value for KNM , Equation 3.3 is able to predict the position of 208Pb, but misses every point

below, missing the trend in the lowest masses. To describe even this simplest mode, one

needs to include more than just compressional vibrations.

The hydrodynamical model that has been applied to the isovector counterpart of the IS-

GMR, the IVGMR, approaches nuclei as droplets of viscous compressible fluids with degrees

of freedom for protons (Z), neutrons (N), spin-up, and spin-down. As in the ISGMR, these
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components are allowed to oscillate at small amplitude around an equilibrium density, as

shown in Figure 1.1. The solution, as discussed in References [31] and [34] and references

therein, come from linearized Navier-Stokes equations. Solving for the IVGMR,

EIV GMR
X = 170A−1/3 MeV. (3.4)

Figure 3.1(b) draws Equation 3.4 as the solid line along with data taken for the IVGMR from

pion charge exchange experiments [10, 11]. As with the compressional mode calculation for

the ISGMR, the model does not reproduce the shape of the resonance position as a function

of nuclear mass. Further work by Bowman et al. [33] showed that not only are volume

oscillations needed to describe GRs, but surface effects must be taken into account as well.

The excitation energy of the IVGMR was found approximated to be

EIV GMR
X = 88A−1/6

(
1 +

14

3
A−1/3

)−1/2

MeV. (3.5)

In Figure 3.1(b), Equation 3.5 is drawn. By including into the model surface oscillations

along with compressional modes, Equation 3.5 is found to represent the data.

3.2 Microscopic Picture

In the microscopic picture, a nuclear resonance is described as a coherent superposition

of one-particle, one-hole (1p-1h) excitations and is limited in strength by the one-body

operator’s sum rule. A giant resonance typically exhausts most of the one-body operator’s

sum rule and begin appearing at least several MeV above the ground state. The details of

the microscopic calculations have been summarized well in [1, 30, 35, 36, 17, 37].
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The response of a nucleus to an arbitrary one-body operator (O) defines the associated

strength function, and is built by connecting the ground state of a nucleus to the excited

states as

SO(E) =
∑
f

∣∣〈φf |O|φ0
〉∣∣2 δ(Ef − E) (3.6)

where |φ0〉 and
∣∣φf〉 denote the ground (0) and final (f) states. The one-body operator

describing GRs is of the form

O
µ
JM = rλ

[
~σ ⊗ ~YL

]J
M
τµ (3.7)

where ~J = ~L + ~S, M is the projection of J , ~σ is the spin operator, ~YL is the spherical

harmonic associated with L, τµ is the isovector operator in the direction µ, and λ = 2n+ L

where n is the number of major oscillator shells the transition occurs over. For the IVGMR

(n = 1, L = 0, J = 0), the operator reduces to

Oµ = r2τµ. (3.8)

To define the sum rules associated with the one-body operator (O), the moments of the

strength function are taken to be:

mk(O) =

∫ ∞
0

(E − E0)kSO(E)dE (3.9)

=
∑
f

(Ef − E0)k
∣∣〈φf |O|φ0

〉∣∣2 (3.10)
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with k = 0,±1,±2, . . . giving the infinite set of moments to describe the strength function

[31], and where Equation 3.9 describes continuum states and Equation 3.10 describes discreet

states. As described in Reference [31], the moments can be used to define parameters such as

average excitation energy (〈EX〉 = m1/m0) and variance (σ =
√
m2 − (m1)/m0). The odd

moments of the strength function can be written to allow a model-independent description of

the strength, depending only on the operator, the Hamiltonian, and the ground-state wave

function [36].

The first-order moment is used to describe GRs and is classified as the energy weighted

sum rule (EWSR). The EWSR is of interest because the energy term in the strength function

can relate back to intrinsic properties of the nucleus such as the mean excitation energy and

can be determined model independently [1, 36]. Taking the first energy moment of the

strength function in Equation 3.10 (k = 1), the sum rule can be written as [36, 38]

m1(O) =
〈
φ0

∣∣∣[O†, [H,O]
]∣∣∣φ0

〉
(3.11)

where m1(O) is the EWSR, |φ0〉 is the ground state, O is the one-body operator acting on

the system, and H is the Hamiltonian of the system.

The non-energy weighted sum rule (NEWSR) is the non-energy moment of Equations

3.9 and 3.10 (k = 0). The NEWSR is useful in observing strength exhaustion in charge

exchange reactions, as it gives the complete integral of the strength function. In the charge

exchange mode, the NEWSR can be written as [38]

m0(O) =
〈
φ0

∣∣∣[O†, O]∣∣∣φ0

〉
(3.12)

where m0(O) is the NEWSR, |φ0〉 is the ground state, and O is the one-body operator acting
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on the system.

The typical starting point for solving Equation 3.6 is to invoke the independent particle

model (IPM). In the IPM, the nucleons are assumed to move independently from each

other in a mean field produced from interactions of all other particles in the nucleus. A

single-particle Hartree-Fock (HF) Hamiltonian is constructed with the self-consistent HF

field (
∑
i6=j v( ~rij))

HHF =
∑
i

pi
2m

+
1

2

∑
i6=j

v( ~rij). (3.13)

The two-body force used here in the HF approach assumes the so-called residual interaction

of multiparticle-multihole states of the nucleus are negligible. To complete analysis in the

IPM, the HF ground state is used as a vacuum to set up a complete basis of many-particle

wave functions, and the strength function is generated.

When the ground state is approximated reasonably well by a single Slater determinant

of single particle orbitals, the random-phase approximation (RPA) gives a good description

of the nuclear excitation energy spectrum. The RPA can be viewed as a perturbation on

the HF picture in the IPM, where the residual interaction not treated in Equation 3.13 is

diagonalized within the model space of 1p-1h excitations.

The starting point for deriving the equations describing the RPA is to use the equations-

of-motion (EOM). The EOM method expresses excited states by a creation operator (Q
†
f )

acting upon the the ground state

|f〉 = Q
†
f |0〉 (3.14)

where the ground state is defined such that
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Qf |0〉 = 0 for all f (3.15)

Here the index f labels the excited states of the system. In this formulation of the RPA

with only 1p-1h excitations, taking the commutation relation between the creation operator

and the Hamiltonian of the A-particle system and applying an arbitrary variation describes

the creation operator as

Q
†
f =

∑
m,i

(X
f
mia
†
mai − Y fmia

†
iam). (3.16)

Here a
†
m(ai) are creation (annihilation) operators. The absolute squares of X

f
mi and Y

f
mi

give the probability of observing a
†
mai |0〉 and a

†
iam |0〉 as contributing to the excited state

|f〉 [35].

To perform the calculation, a complete set of single-particle wave functions with known

single-particle energies and a residual particle-hole interaction is needed. To obtain these

components, one can start with a self-consistent HF calculation. In this case the method

is denoted ‘self-consistent RPA.’ Furthermore, if the single-particle continuum is included

explicitly, the method is denoted as ‘continuum RPA’ or CRPA[39].

It is with the inclusion of the continuum in the CRPA, or in further extended RPAs the

coupling to more complex np-nh configurations, that one is able to begin to describe more

completely the widths of GRs by allowing complex decay modes. As illustrated in Figure 3.2,

besides having an inherent width (Γinh) of the resonance from the spreading in excitation

energy due to distribution of the 1p-1h states, the width of a GR is described as

Γtot = Γinh + Γ↑ + Γ↓ (3.17)
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Figure 3.2 Schematic representation of the width of the collective 1p-1h state into a direct
component Γ↑ and a spreading component Γ↓. The spreading component can be further
broken into terms describing statistical decay of the equilibrium compound nucleus Γ↓↓ and
decay of the intermediate, pre-equilibrium states Γ↑↓. Figure reproduced from [40].

where Γ↑ describes the direct (and semi-direct) decay mechanism and is called the escape

width and Γ↓ describes the statistical decay mode and is called the spreading width. Γinh

arises from the spreading in excitation energy of the initial collective 1p-1h strength function,

and is large for light nuclei; where the correlated 1p-1h excitation couples with uncorrelated

1p-1h configurations, causing a fragmentation of the correlated wave function [41]. Here it

becomes apparent that while macroscopic theories of GRs can begin to address Γinh and Γ↑

of GRs, exclusion of more complex configurations and particle emission into the continuum

limits the ability of the theory to describe Γ↓ [31].

The escape width Γ↑ is a result of the coupling of the correlated 1p-1h state to the

continuum, allowing semi-direct decay of the nucleus A into holes states in the (A-1) nucleus.

As illustrated in Figure 3.2, the resonance may also compete with knock-out processes for

the population of hole states in the (A-1) nucleus. Since a description of the coupling to the
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Figure 3.3 Theoretical and experimental GT strength distributions in 208Pb (upper panel)
and their cumulative sums (lower panel)[42]. The top panel illustrates the fragmentation
of the strength allowed in the RTBA, rather than collecting strength into one major peak.
Here ω represents the excitation energy of the 208Pb.

continuum is necessary to adequately describe the escape width, the prediction of this width

is model dependent.

The spreading width Γ↓ is well understood and can be broken down further into decay

of a pre-equilibrium state Γ↑↓ and an equilibrium state Γ↓↓ such that the spreading width is

Γ↓ = Γ↑↓ + Γ↓↓ (3.18)

. The pre-equilibrium partial width Γ↑↓ is a result of decay of the resonance at an interme-

diate state of coupling to more complex np-nh states, and the equilibrium partial width Γ↓↓

is a result of decay of the compound nucleus.

While the CRPA begins to allow a description of the width of GRs, further developments
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Figure 3.4 Results of the RTBA calculation for the IVGMR and the IVGDR by E. Litvinova
[43, 42]. Strengths have been smeared with Lorentzians of 2 MeV in width.

are needed to describe the collective nature and fragmentation of the strength function

in excitation energy. For instance, the quasi-particle RPA (QRPA) model was developed to

accurately describe collective states. In the QRPA, the inclusion of quasiparticles reproduces

ground state pairing correlations more accurately than with just particles; a full description

of the QRPA technique can be found in References [44, 45, 46]. While the QRPA does well

in describing collective states to give the centroid energies and total strength of the GRs

[47], it fails to reproduce the total widths and fine structure [48] since these aspects of the

GRs are strongly sensitive to more complex configurations that form Γ↓ (such as 2p-2h or

4-quasiparticle configurations).

In this study, the relativistic time-blocking approximation (RTBA) is used, a full discus-

sion on the RTBA and its applicability can be found in [48, 43, 42]. The RTBA is similar to

the RPAs, but is an extension of the time-dependent covariant DFT which includes particle-

vibration coupling. The introduction of the particle-vibration coupling allows fragmentation
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of the strength to more realistic distributions, where other RPAs have typically collected

strength in large peaks as shown in Figure 3.3 where measured GT strength in 208Pb is

compared to QRPA, relativistic RPA (RRPA) [49], and RTBA calculations. The QRPA and

RRPA results collect most of the strength into one peak near 16 MeV. The RTBA results

are spread across the measured strengths, and reproduce well the distribution.

Calculations for the IVGMR and IVGDR for the 28Si→28Al charge-exchange reaction

were performed in the RTBA [43, 42] with operators OIV GMR = r2τ and OIV GDR = rY1τ

by E. Litvinova. Figure 3.4 shows the result of the calculation with a smearing of the

point strengths with Lorentzians of width 2 MeV. For the IVGMR, the strength is highly

fragmented. The largest peak appears at 14 MeV, with other peaks appearing from 4 to

60 MeV. The IVGDR has a peak collected at 10 MeV and remaining strength distributed

to higher excitation energy. The total sum of the strength for the IVGMR and IVGDR

calculated in the RTBA is 31.36 fm4 and 14.67 fm2, respectively.
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Chapter 4

Theoretical Cross-Section

Calculations and Applications

Isolation of the isovector monopole strength requires separation of transitions with no transfer

of orbital or spin angular momentum (∆L = 0, ∆S = 0) from all other charge exchange

transitions. Separation of the ∆L = 0 component from the measured differential cross-

section is performed through a Multipole Decomposition Analysis (MDA) using theoretical

angular distributions. A full description of the MDA can be found in chapter 7. This chapter

will detail the method used to obtain theoretical differential cross-sections in the Distorted

Wave Born Approximation (DWBA). The formalism for such calculations is well established,

and excellent references can be found in [50, 51].

The DWBA calculations in this work are done using the package known as FOLD [52] which

consists of three modules: WSAW, FOLD, and DWHI. WSAW calculates the single-particle wave

functions in a Woods-Saxon potential for input into the module FOLD. FOLD produces form

factors by double folding the effective nucleon-nucleon (NN) interaction over the transition

densities for the projectile-ejectile and target-residual systems. The transition densities are

obtained through shell model calculations in NuShellX [53, 54] when feasible, or through

the normal modes formalism [55] using the code NORMOD [56]. Finally, cross-sections are

obtained with the module DWHI by using an optical model potential to create distorted
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waves and produce the transition matrix element.

4.1 The Differential Cross-Section

The differential cross-section of a reaction tells us the scattered flux of particles with respect

to the incoming flux of particles as

dσ

dΩ
=
ĵf (θ, φ)

ji
. (4.1)

where ĵf (θ, φ) is the current of scattered particles in the direction (θ, φ) and ji is the incident

flux. Asymptotically, the combined incident and scattered waves are of the form

ψasym = ψbeam + ψscat
r→∞−−−−→ A

[
eikiz + f(θ, φ)

e
ikfR

R

]
(4.2)

where ψasym is the asymptotic form of the wave function, ψbeam is the wave function for

the beam, ψscat is the scattered wave, A is the amplitude for the waves in the direction of

the beam (eikiz) and the scattered wave (e
ikfR/R), f(θ, φ) is the amplitude of the outgoing

spherical wave (e
ikfR/R), and k is the wave vector for the initial (i) and final (f) state.

Equation 4.2 can be combined with Equation 4.1 and the fact that ~j = ~v |ψ|2 to produce

dσ

dΩ
=
vf
vi
|f(θ, φ)|2 (4.3)
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where f(θ, φ) is the amplitude of the outgoing spherical wave induced by a plane wave of unit

amplitude, or scattering amplitude, and vf,i are the final and initial velocities, respectively.

It can be shown (Ref. [50], Ch. 2) that

f(θ, φ) = − µf
2π~Tfi (4.4)

Tfi = 〈f |T | i〉 (4.5)

where Tfi are the transition matrix elements connecting the initial and final states, also

referred to as the t-matrix, µf is the reduced mass of the outgoing particle, and |f, i〉 are

the final and initial wave functions, respectively.

In this formulation of the differential cross-section, the asymptotic behavior of the scat-

tering wave functions must match the boundary conditions of an incoming plane wave and

an outgoing spherical wave.

4.2 The Distorted Wave Born Approximation

In this analysis, the transition matrix is calculated by obtaining the transition matrix via

truncation of the problem using the Born approximation and separation of the scattering

potential into a component that distorts the incoming and outgoing waves and a component

containing all residual interactions. These steps, delineated below, comprise what is known

as the distorted wave Born approximation (DWBA).

To gain a deeper understanding of the transition matrix, the details of how it arises from

the interaction of the incoming wave with the scatterer will be examined. Recalling that the
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incoming wave is represented by a plane wave, the behavior of the system is not influenced

by any potential resulting in the free Hamiltonian,

H0 =
p2

2µ
(4.6)

where p is the momentum and µ is the mass. The Schrödinger equation and radial equation

are then

(E −H0) |ψ0〉 = 0 and 〈~r|ψ0〉 = ψ0(~r) = e−i~ki·r. (4.7)

where E is the energy, |ψ0〉 is the final wave function, r is the radial direction in spherical

coordinates, and k is the wave vector. For the asymptotic form, the scattering potential

must be local, i.e.

lim
r→∞V (~r) = 0. (4.8)

Including this potential, V , into Equation 4.7, letting H = H0 + V ,

(E −H0 − V ) |ψ〉 = 0 (4.9)

where |ψ〉 is the wave function interacting with V .

The wave function from Equation 4.9 is broken up into the free solution |ψ0〉 and the

scattered solution |ψS〉

|ψ〉 = |ψ0〉+ |ψS〉 . (4.10)
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To obtain the full asymptotic form of the wave function, the solution to the scattered wave

is necessary; rearranging Equation 4.10

|ψS〉 = |ψ0〉 − |ψ〉 . (4.11)

Expanding Equation 4.9 with Equation 4.10

(E −H0) |ψ〉 = (E −H0)(|ψ0〉+ |ψS〉) = (E −H0) |ψS〉 (4.12a)

= V |ψ〉 . (4.12b)

Relating Equations 4.12a and 4.12b

|ψS〉 = (E −H0)−1V |ψ〉 (4.13a)

|ψ〉 = |ψ0〉+ (E −H0)−1V |ψ〉 . (4.13b)

Equation 4.13b is known as the Lippman-Schwinger equation and can be shown to give rise

to the Green’s function (Ref. [51], section 3.8)

G±0 = G±H0
(E) = lim

ε→0
(E −H0 ± iε)−1 (4.14a)

G±0 (~r, ~r
′
) =

1

(2π)3

∫
φ(~k
′
, ~r)φ∗(~k

′
, ~r
′
)

E − E′ ± iε
d~k
′

(4.14b)

∣∣ψ±〉 = |ψ0〉+G±0 V
∣∣ψ±〉 . (4.14c)
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Figure 4.1 Illustration of the propagation of a projectile between scattering events.

where the + and − indicate the outgoing and incoming wave propagation respectively.

The nature of the Green’s function can be interpreted as propagating the free projectile

between scattering potentials within the scattering region as illustrated in Fig. 4.1. In this

manner, each scattering event contributes successively to the final outgoing scattered wave

such that the cumulative wave function can be written as

|ψnew〉 = |ψ0〉+G±0 V |ψold〉 (4.15a)

|ψ〉 =
N∑
n=0

(G±0 V )n |ψ0〉 , (4.15b)

where |ψ〉 is the outgoing wave, |ψ0〉 is the incoming plane wave, and N is the number of

interactions. Projecting this onto the space ~r

ψ(~r) =

〈
~r

∣∣∣∣∣∣=
N∑
n=0

(G±0 V )n

∣∣∣∣∣∣ψ0

〉
= ψ0(~r) +

〈
~r
∣∣G±0 V ∣∣ψ0

〉
+
〈
~r
∣∣G±0 V G±0 V ∣∣ψ0

〉
+ · · ·

= ψ0(~r) +

∫
d3r
′
G±0 (~r, ~r

′
)V (~r

′
)ψ0(~r

′
) (4.16)

+

∫ ∫
d3r
′
d3r
′′
G±0 (~r, ~r

′
)V (~r

′
)G±0 (~r

′
, ~r
′′
)V (~r

′′
)ψ0(~r

′′
)

+ · · ·
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where G±0 = eik|~r−~r
′ |

|~r−~r′ |
.

To account for all events in the scattering region, all terms in Equation 4.15b are collected

to define the transition matrix which describes the effect of the scattering region on the wave

function.

|ψ〉 =
N∑
n=0

(G±0 V )n |ψ0〉 = |ψ0〉+ |ψS〉 (4.17)

|ψS〉 = G±0
(
V + V G±0 V + V G±0 V G

±
0 V + · · ·

)
|ψ0〉 (4.18)

= G±0 T |ψ0〉 (4.19)

We see then that the scattered wave is produced from a term that contains the information

about scattering points within the scattering region followed by a term that propagates the

wave away to the detector. Thus the transition matrix is

T± = V + V G±0 V + V G±0 V G
±
0 V + · · · (4.20)

T±BA = V + V G±0 V (4.21)

where Equation 4.21 is the Born approximation to first order in the transition matrix (TBA).

Applying this to Equation 4.17, the final form of the outgoing wave is of the form

|ψ〉 = |ψ0〉+G±0 T
±
BA |ψ0〉 (4.22)
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Returning to Equation 4.16, making the first order Born approximation and taking the

asymptotic limit, the integral simplifies

lim
r→∞ψ (~r) = ψ0 (~r) + lim

r→∞

∫
d3r
′
d3r
′′
G0

(
~r, ~r
′)
T±
(
~r
′
, ~r
′′)

ψ0

(
~r
′′)

. (4.23)

where the label BA has been removed from the transition matrix as this result is independent

of the Born approximation. Taking the incident state as a plane wave

ψ0(~r) =Exp[i~k ·~r] =Exp[ikz] and reducing the Green’s function in the asymptotic limit, this

reduces Equation 4.16 further to

lim
r→∞ψ (~r) = eikz − µ

2π~2

eikr

r

∫
d3r
′
d3r
′′
e−ik~e(θ,φ)·~r′T±

(
~r
′
, ~r
′′)

eik~ez ·~r
′′

(4.24)

= eikz − f(θ, φ)
eikr

r
. (4.25)

Comparing Equations 4.24 and 4.25, the form of the scattering amplitude is deduced:

f (θ, φ) = − µ

2π~2

〈
ψ0

∣∣T+
∣∣ψ0

〉
(4.26a)

= − µ

2π~2

〈
ψ0 |V |ψ+〉 (4.26b)

= − µ

2π~2
Tfi (4.26c)

where Tfi is introduced as short-hand for the transition matrix connecting the incoming

and outgoing wave and Equation 4.26b takes only the the first term of the transition matrix
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series following the Born approximation.

Following References [50] and [51] to develop the full DWBA, the potential V is split into

two components

V = U +W (4.27)

where the average potential U describes the elastic scattering of the projectile due to the

target and W contains the residual information pertaining to the interaction between nucle-

ons. The distorting potential is then used in the Lippmann-Schwinger equation (Equation

4.13b) to obtain the distorted waves

∣∣χ±〉 = |ψ0〉+G±UU |ψ0〉 (4.28)

where G±U is the Green’s function defined by the Hamiltonian with potential U. Comparing

again with Equation 4.13b, the solution will be of the form

∣∣ψ±〉 =
∣∣χ±〉+G±UW

∣∣ψ±〉 . (4.29)
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Using this potential, the transition matrix is broken into two parts [51]

Tfi =
〈
ψ0 |U |χ+〉+

〈
χ− |W |ψ+〉 (4.30a)

=
〈
χ− |W |ψ+〉 . (4.30b)

where the distorting potential U does not directly connect the initial and final states in a

charge-exchange reaction yielding the form in Equation 4.30b. Expanding Equation 4.30b

with Equation 4.29 and taking the Born approximation, the transition matrix for the DWBA

is obtained,

Tfi =
〈
χ− |W |χ+〉 . (4.31)

Equation 4.31 describes the scattering process. An incoming wave, distorted by the scat-

terer’s potential U , has some nuclear structure which interacts with the scatterer’s nucleons

via potential W , and exits in a modified form that is also distorted by the potential of the

residual of the scatterer. The distortion of the incoming and outgoing waves are taken into

account through an optical model to describe the scattering potential. The nature of the

interaction between the nucleons (W ) participating in the scattering event is not trivial.

In practice a form factor describing the potential needs to be taken into account, and is

described in Section 4.3. This requires knowledge of the structure of the participating nuclei

and the nature of the individual nucleon-nucleon (NN) interaction.

Calculations of the differential cross section in the DWBA were performed using the
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code DWHI from the package FOLD [52]. An essential ingredient to the calculation of the

differential cross section in this method are the optical model potentials (OMPs) that distort

the incoming and outgoing waves. When available, empirically obtained OMPs are used to

describe the potentials that distort the waves. When a suitable OMP is not available for

the reacting ions (e.g. 28Si interacting with 10Be, and 28Al interacting with 10B), one may

employ various theoretical efforts to obtain the OMP. The method used in this study is

described below in Section 4.2.1.

4.2.1 Calculation of Optical Model Potentials

As described in Section 4.2, an essential ingredient in the cross section calculation is the

optical model potential that distorts the incoming and outgoing waves. The complex op-

tical potentials used to compute the 10Be-28Si entrance-channel and 10B-28Al exit-channel

distorted waves were calculated using the methods used routinely for fast nucleon removal

reaction analyses [57]. These employ the double-folding model [58], assuming 28Si and 28Al

densities calculated from spherical HF calculations using the SkX parametrization of the

Skyrme interaction [59], Gaussian 10Be and 10B densities with root mean squared (rms)

radii of 2.30 fm [60], and an effective two-nucleon (NN) interaction. A Gaussian NN effective

interaction is assumed [61], with a range of 0.5 fm. The interaction strength is determined

in the usual way [62], from the free pp and np cross sections at 100MeV, with the real-

to-imaginary ratios of the forward scattering NN amplitudes taken from the tabulation of

Ray [63]. OMPs were compared with measured systems from Reference [64] to estimate

systematic uncertainties at 10%.
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4.3 Form Factors

In Section 4.2, the DWBA was used to simply describe the scattering process in terms

of the transition amplitude in equation 4.31.A form factor is calculated by double folding

the effective NN interaction over the transition densities of the projectile-ejectile and target

residual systems to evaluate the transition amplitude. The resulting form factor is defined

as

F (~s) =
〈
φeφr

∣∣Veff (~s)
∣∣φtφp〉 (4.32)

where φe,r,t,p represent the single-particle wave functions of the reaction systems. The

double-folding over the transition densities of the participant nuclei in the reaction is nec-

essary to account for the composite nature of the nuclei. The coordinates describing the

interaction are illustrated in Figure 4.2.

In practice, the the form factor in Equation 4.32 is evaluated by calculating an integral

over the target and projectile systems where the transition densities for each system are

obtained as a function of ~rp,t, the coordinate connecting the interacting nucleons to their

core nucleus where p represents the projectile and t represents the target:

A,B

~rt

~s

~rp

~r

a,b

Figure 4.2 Coordinate definitions for the form factor calculation where the projectile/ejectile
system is defined with a,b respectively and the target/residual system is defined with A,B
respectively.
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F (~s) =

∫
drtdrpρab(~rp)Veff (~s, ~rp, ~rt)ρAB(~rt). (4.33)

where the transition densities (ρab,AB) provide the information about the overlap of the final

and initial state of the nucleus and are defined as

ρLSJ =
∑
np

〈
f
∣∣∣∣∣∣[a†a]∣∣∣∣∣∣ i〉 [φ∗φ] (4.34)

where i, f are the initial and final states respectively, a(a†) is the annihilation(creation)

operator that acts on the internal wave function of the nucleus to describe the interacting

nucleons, and φ are again the single-particle wave functions of the nucleus. The reduced

matrix element in Equation 4.34 is referred to as the one-body transition density (OBTD).

In this study, the program FOLD is used from the package of the same name [52]. The

effective interaction and the OBTDs included in this calculation are described in the following

subsections. The obtained form factors are then used in the program DWHI from the FOLD

package to calculate the cross section.

4.3.1 The Effective Nucleon-Nucleon Interaction

The effective NN interaction (Veff ) describes the interaction between the projectile and target

nucleons. A phenomenological description of Veff was detailed by Love and Franey in 1981

via a phase shift analysis of NN scattering data [21], and updated in 1985 by Franey and

Love with an updated data set [65]. In this method, Veff is parameterized by central (V C),

spin-orbit(V LS), and tensor (V T ) contributions to the interaction as

V12 = V C(r12) + V LS(r12)~L · ~S + V T (r12)S12 (4.35)
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where 1 and 2 refer to the interacting nucleons, ~L · ~S is the spin-orbit operator, and S12 is

the tensor operator. Each component of the effective interaction can also be expressed as

V C = V0 + Vσ(r)~σ1 · ~σ2 + Vτ (r)~τ1 · ~τ2 + Vστ (r)(~σ1 · ~σ2) · (~τ1 · ~τ2) (4.36)

V LS = VLS(r)(~L · ~S) + VLSτ (r)(~L · ~S) · (~τ1 · ~τ2) (4.37)

V T = VT (r)S12 + VTτ (r)S12(~τ1 · ~τ2) (4.38)

where σ and τ denote spin and isospin operations respectively.

The terms in Equations 4.36 to 4.38 can be regrouped in terms of the spin-isospin tran-

sitions that the potential mediates. In terms of charge exchange reactions, the terms that

include τ are of interest. In References [21, 65] it is shown that in the case of zero momentum

transfer the central part of the effective interaction (Equation 4.36) is the primary contrib-

utor since the spin-orbit term is negligible and the tensor term is small. In Figure 4.3 the

amplitudes of the t-matrix for the central components of Veff are shown. The red and blue

lines represent the isovector contributions to Veff for the non-spin-transfer and spin-transfer

reactions respectively. The square of the volume integral (|J |2) of τ and στ components of

the effective NN interaction shown in Figure 4.3 illustrate the relative intensity of the peak

cross-section as a function of incident beam energy.

For reliable extraction of experimental information about the IVGMR, a clean, single-step

∆S = 0, ∆T = 1 reaction is necessary. This means three requirements must be met.

1. Clean ∆S = 0, ∆T = 1 filter

The 10Be-10B+γ probe acts as the ∆S = 0, ∆T = 1 filter as described in Chapter 1,
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Figure 4.3 Energy dependence of the central components of the effective interaction. The
square volume integrals |J |2 are square amplitudes for the the t-matrix representing the
transition between final and initial states, from [65]. Shading schematically representing
the transition from complex reaction mechanisms to single-step reactions at 100 MeV/u is
described in [18].

but the peak cross-section of the Vτ operator is highly sensitive to the incident beam

energy. As can be seen in Figure 4.3, the spin-transfer, isovector (Vστ ) contribution to

Veff is dominant over the Vτ contribution for all but the lowest and highest bombard-

ing energies. Increasing beam energies above 200 MeV begins to increase the relative

strength of the Vτ contributions. The same can be achieved by lowering the beam

energy, and are in the range of achievable energies in this study. Optimally one would

want to lower beam energies such that the Vτ contribution becomes dominant. How-

ever, as one lowers beam energies, contributions from complex reactions mechanisms
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come into play.

2. Clean single-step CE mechanism

As illustrated in purple in Figure 4.3, below 100 MeV in incident beam energy, complex,

multi-step reactions participate. This makes theoretical description of the reaction

more difficult than the direct sing-step reactions assumed in this chapter. An adequate

description of the reaction is necessary for separating the multipole (∆L) components

of the observed angular distributions as described in Section 7.1. A balance can be

struck at ∼100 MeV/u where multi-step reactions no longer contribute significantly

[18, 64] and Vτ is at its maximum usable level.

3. Probe of nuclear surface

As shown in Figure 2.2 in Section 2.1, the 10Be-10B probe is strongly absorbed at

the nuclear surface. This is important because probing the full volume of the nucleus

would reduce the cross-section from cancellation of the strength.

The NN interaction should include exchange terms that represent collisions between nuclei

resulting in nucleon exchange. A short-range approximation has been used to estimate the

knock-on exchange contributions to the interaction [21], but has been observed to underesti-

mate the destructive contributions for complex probes [66]. In this work, we have attempted

to take into account by measuring the over estimation of a known state in Chapter 7, and

applying the result to the IVGMR.

4.3.2 One-Body Transition Densities

The one-body transition density (OBTD), as shown in Equation 4.34, represents in a concise

manner the most general information needed to connect an initial and final state by the
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action of one-body operators. In Equation 4.33, it is shown that the one-body transition

density needs to be calculated for both the projectile/ejectile and target/residual systems.

In this study, two methods of calculating the one-body transition densities are employed.

For the Fermi and GT transitions in the 10Be-10B system, a shell model calculation was

performed to determine the OBTDs. In the 28Si-28Al system where the 1, 2~ω excitations

produce configurations outside the major oscillator shell, the calculation in the shell model

becomes intractable. For this, OBTDs are calculated in the the normal modes formalism.

Descriptions of both methods are covered in the following subsubsections.

4.3.2.1 In the Shell Model

The OBTDs for the 10Be-10B system were calculated using the shell model code NUSHELLX@MSU

[67, 68]. Schematically, the shell model code calculates the importance of each single-particle

transition and the phase factors to incorporate all of the necessary angular momentum co-

efficients into the OBTD.

4.3.2.2 In the Normal Modes Formalism

The model space necessary to calculate the giant resonance OBTDs in the 28Si-28Al system is

much larger than what can be reasonably handled in the shell model calculations referenced

above. To obtain the OBTDs for these excitations, a normal modes formalism was employed

as described by References [17, 55]. Calculations were performed with the computer code

NORMOD [55].

The normal-modes calculation gives the most coherent superposition of the 1p-1h exci-

tations for a given operator. They exhaust completely the NEWSR strengths (described

in Section 3.2) for the particle-hole operator associated with a resonance, and is generally
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defined as

O
µ
JM = rλ

[
~YL ⊗ ~σ

]J
M
τµ (4.39)

where ~J = ~L + ~S, M is the projection of J , ~σ is the spin operator, ~YL is the spherical

harmonic associated with L, τµ is the isovector operator in the direction µ, and λ = 2n+ L

where n is the number of major oscillator shells the transition occurs over.

The particle-hole operator O
µ
JM connects the initial |0〉 and final |JM〉 states. The final

state of the nucleus can be written as

|JM〉 =
∑
ph

XJM
ph

[
a
†
pah

]
JM
|0〉 (4.40)

where

XJM
ph =

〈JM |OµJM |0〉√∑
ph

∣∣〈ph; JM |OµJM |0〉
∣∣2 (4.41)

and a†(a) are the raising (lowering) operators for the particle (p) and hole (h) states. The

total sum of the multipole strength is described as

SJM =
∑
JM

∣∣〈JM ∣∣OµJM ∣∣ 0〉∣∣2 . (4.42)

The normalization of Equation 4.40 is chosen such that Equation 4.42 exhausts the full

multipole strength of the operator O
µ
JM [55]. In this definition then, the normal modes are

OBTD’s.

For the IVGMR in 28Al, the operator takes the form
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ÔIV GMR = r2τ. (4.43)

As pictured in Figure 2.1, the particle-hole transitions excited are
(

0s1/2 → 1s1/2

)
,
(

0p3/2 → 1p3/2

)
,(

0p1/2 → 1p1/2

)
, and

(
0d5/2 → 1d5/2

)
. The total strength calculated in this process is

28.6 fm4, but no information is given in this method about the strength distribution as a

function of excitation energy.

A calculation was also performed for the IVGDR in 28Al, where the operator now takes

the form

ÔIV GDR = rY1τ. (4.44)

Here the total strength calculated is 15.2 fm2.

4.3.3 Single-Particle Wave functions

An important ingredient to the form factor calculation is the inclusion of single-particle (s.p.)

wave functions. S.P. wave functions for the one-particle and one-hole states connected by the

OBTD are calculated using the program WSAW from the the FOLD package [52]. A necessary

input for the calculation is the binding energy of the single-particle states participating in the

excitation. These were calculated using the NUSHELLX@MSU package with the DENS function

[67], employing the SkX Skyrme interaction [59]. The procedure to obtain the radial wave

functions from WSAW requires fitting the solutions to the Schrödinger equation such that they

match the binding energies.
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0 0
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0 1
2 1

2 0
2 1

4 1
2 1

− 1 1
1 1

1 1
1 0

1 1
3 1

3 0
3 1

Table 4.1 Possible angular momentum transfers, separated by parity. Highlighted in red are
the ∆S = 0 used in this study.

4.4 Results of Calculation

Cross sections were calculated in this study from the ground states of 28Si and 10Be. Calcu-

lations were performed for excitations of isovector, non-spin-flip (∆T = 1, ∆S = 0) reactions

of multipoles ∆L= 0, 1, 2, and 3 in the 28Si-28Al system. In this text, the angular momen-

tum transfer ∆L will be used interchangeably with the total angular momentum transfer

∆J= ∆L+∆S since ∆S = 0 reactions are of interest. Table 4.1 indicates some of the an-

gular momentum transfers that are possible in nuclear reactions. Since the (10Be,10B+γ)

probe isolates the ∆T = 1, ∆S = 0 reactions, the highlighted transitions show that ∆J and

∆L may be used interchangeably when addressing only ∆S = 0 reactions.

The cross sections are to be applied in the multipole decomposition analysis of the mea-

sured data, as described in Section 7.1. To decompose the entire spectrum, the calculations

were performed across a range of reaction Q-values that span the observed excitation energy

spectrum. Calculated angular distributions at 15 MeV, which is in the expected energy

region of the IVGMR, are shown in Figure 4.4.

Similar to the calculation above, angular distributions were also calculated for the 12C(10Be,10B)12B

reaction since data were also taken for this reaction. The interest here is to measure the

12C(0+,g.s.)→12B(1+,g.s.) transition, which is a GT(0~ω,∆L = 0,∆S = 1,∆T = 1) reaction

(whereas the IVGMR is 2~ω, ∆L = 0, ∆S = 0, ∆T = 1). The measurement of this state
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Figure 4.4 Angular distributions for 28Si(10Be,10B)28Al as calculated with FOLD, at EX =
15.0MeV .

will allow an estimation of the over calculation of the DWBA cross-section as described at

the end of Section 4.3.1, and implemented in Chapter 7. Figure 4.5 shows the results of the

calculation for the GT transition to the ground state of 12B. For this data set, calculations

were only performed for transitions to the ground state of 12B for evaluation.
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Chapter 5

Experiment

Experiment 11021 ran in June of 2013 at the National Superconducting Cyclotron Labo-

ratory (NSCL) with the purpose of isolating the IVGMR using the (10Be,10B+γ) charge

exchange probe for its sensitivity to the non-spin-flip reaction channel. This chapter details

the production of 10Be and the experimental devices used for detection of the reaction.

5.1 Beam Preparation and Delivery

Rare isotope beams at the NSCL are produced in a fast fragmentation process at intermediate

energies. A stable isotope of heavier mass than the particle of interest is accelerated to

relativistic speeds through the Coupled Cyclotron Facility (CCF) at the NSCL [69] and

impinged upon a thick fragmentation target (typically Beryllium). Many of the resulting

ejectiles have been broken up, or fragmented, by the target, and since the fragments are

produced in flight, relatively short-lived isotopes can be guided to the experimental stations.

The in-flight fragments are purified in the so-called A1900 fragment separator [70]. In

this process the fragments are separated by their magnetic rigidity, typically resulting in a

highly purified beam of the isotope of interest. The highly purified beam is then transported

to the experimental vaults of the NSCL.
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Figure 5.1 Schematic overview of the coupled K500 and K1200 cyclotrons and the A1900
Fragment Separator

5.1.1 Coupled Cyclotrons

The Coupled Cyclotron Facility at the NSCL [69] consists of two particle accelerators, the

K500 and the K1200 as shown in Figure 5.1, for the production of primary beams of 100 to

160 MeV/u. The numeric naming of the cyclotrons indicate the maximum extraction energy

for protons. The purpose of coupling the cyclotrons was to allow for higher intensities, as

well as raising the energy limits for heavier ions.

Operationally, ions in an intermediate charge state are injected into the K500 cyclotron

to accelerate them to an intermediate energies of 8 to 12 MeV/u. The beam is then extracted

into the coupling line between the K500 and K1200 for injection into the K1200 where the

ions are stripped to their final charge state. The extracted beam from the K1200 at 100 to

160 MeV/u is extracted to the production target at the entrance of the A1900 Fragment

Separator for fragmentation and separation to what is called the secondary beam.

5.1.2 A1900 Fragment Separator

The A1900 Fragment Separator, pictured on the right of Figure 5.1, serves to select specific

ions from the fragmentation products of the fast primary beam bombarding the production
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target. The A1900 employs four 45◦ dipole bending magnets and 8 quadrupole triplet

magnets for focusing the beam. The ion selectivity comes from the four dipole bending

magnets, which separate the ions by their magnetic rigidity (Bρ).

Since the force on the ion due to a dipole magnet causes the ion to travel in a circle, the

force observed by the ion due to the magnetic field can be related to the centripetal motions

as

F =
γmv2

ρ
= QvB (5.1)

where γ = 1/
√

1− (v/c)2 is the Lorentz factor to account for relativistic effects, m is the

mass of the ion, v is the ion velocity, ρ is the gyroscopic radius of the particle due to the

dipole magnetic field, Q is the charge of the ion, and B is the magnetic field of the dipole.

The related forces can be rearranged to define the magnetic rigidity:

Bρ =
γmv

Q
. (5.2)

From left hand side of Equation 5.2, for a constant magnetic setting in the dipole, the

magnetic rigidity defines the radius of curvature of the ion through the magnetic field.

Furthermore, for a beam consisting of different, fully ionized, isotopes the momentum-to-

charge ratio determine the radius of curvature. In the A1900, the magnetic field of the

dipoles are set such that the the path of the ion of interest is bent by 45◦ through each

dipole.

The A1900 system is two-staged. In the first stage, the cocktail of ions coming from

fragmentation in the production target pass through the two dipoles magnets before the

intermediate image point (see Figure 5.1) to be dispersed by their magnetic rigidity. At the
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intermediate image point, an aluminum wedge can be placed to produce a spread in the

velocity of the beam particles since energy deposited depends on Z2 as described by the

Bethe formula, as given in Reference [71],

dE

dx
=

4πe4Z2

m0v2
nabszabs

(
ln

2m0v
2

I
− ln

(
1− v2

c2

)
− v2

c2

)
(5.3)

where e is the electronic charge, m0 is the electron rest mass, Z and v refer to the atomic

number and velocity of the beam particle, and nabs, zabs, and I refer to the number density,

atomic number, and average ionization potential of the absorber material, respectively. By

altering the velocity of the beam ions as a function of Z2, the second stage of the A1900 will

further disperse the ions in the beam by their new Bρ. Following the two-stage fragment

separation in the A1900, there are two slits in the focal plane that can close to further isolate

the ion of interest by its rigidity.

For this study, a 120 MeV/u beam of 18O was impinged upon a 1316 mg/cm2 thick Be

target to produce the fragmented beam. A 800 mg/cm2 aluminum wedge was place at the

intermediate image point of the A1900. Slits to restrict the momentum spread of the beam

were set to dp
p = ±0.25%. In the extended focal plane of the A1900, a suite of detectors

are available which allow for particle identification of the transmitted beam (for method

see Section 6.2). Using these detectors, it was determined that the 10Be secondary beam

extracted from the A1900 was 88% isotopically pure, with contamination coming from 8Li

and 12B.
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5.1.3 Incoming beam rate measurement

To determine the absolute cross-section, the incoming beam rate must be known. Often,

when one measures the beam rate, a detector is placed in the path of the beam to signal as

particles pass through. However, use of such a device would introduce more energy straggling

in the beam than necessary and degrade the final energy resolution of the measurement, and

would be limited to low beam rates.

Therefore, the incoming beam rate was monitored throughout the experiment using a

non-intercepting probe (Z001IC) at the exit of the K1200 and a Faraday bar (Z026RC) on

the inside wall of the A1900’s first dipole magnet as shown in Figure 5.2. This current was

then correlated to the count rate of 10Be in the focal plane of the S800 spectrograph (see

Figure 5.3). The beam was impinged upon a 28Si (35.35 mg/cm2) target, and the S800 was

tuned to select the unreacted beam. A purity of 98% 10Be was observed in the focal plane,

allowing for calibration of the incoming beam rate. An incoming beam rate of greater than

7 MHz of 10Be was observed; incident particles were tabulated for each experimental run.

Early in the experiment, the calibrated beam rates for Z001IC and Z026RC were con-

sistent, as shown in Figure 5.4. However, after a retune of the beam line, Z001IC read a

significantly lower value in current and did not have a consistent calibration, as indicated in

a systematic drop of beam rate following run 142. Therefore, device Z026RC was used for

the incident particle measurement.

5.2 Technical Description of the 10B+γ Measurement

The experimental end-station was located in the S3 vault of NSCL, see Figure 5.3. To

perform the momentum analysis of the 10B reaction ejectile, the large-acceptance, high-
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Figure 5.2 Incoming beam rate of 10Be as measured by the non-intercepting probe Z001IC
and the Faraday bar Z026RC. Cause for outliers from the trend are indicated with arrows.
Also noted are when the beam was returned.

resolution S800 Spectrograph [24] was utilized. The beam line to the spectrograph was

matched to the dispersion of the S800 such that the momentum spread of the beam was

minimized in the S800 focal plane. In the S800 focal plane detector suite [72] (see Figure

5.5), detectors allowed for beam trajectory tracking and particle identification. Surrounding

the S800 target position was the Gamma-Ray Tracking In-beam Array (GRETINA) [73] for

the measurement of the Doppler-reconstructed γ-rays.

It was necessary to operate the S800+GRETINA system for this experiment to isolate the

10B particles from other sources of background and to select the single-step, non-spin-transfer

CE events as described in Chapter 1 from those produced via other reaction mechanisms.

The method of particle identification and gamma analysis will be discussed in Chapter 6.
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Figure 5.3 Schematic depicting analysis line and spectrograph components of the S800 Spec-
trograph

5.2.1 S800 Spectrograph

5.2.1.1 Ion Optics Through a Plane Symmetric Magnetic Field

Before examining the dispersion matching technique utilized for optimal energy resolution in

the S800 spectrograph, some of the optical ideas behind the movement of the ions through

the S800 spectrograph will be examined. The following discussion is to first-order, and will

only cover up to the path of an ion through a dipole magnet, as those present in the S800

spectrograph. A complete discussion can be found in Reference [75].

For a general optical system between two profile planes as shown in Figure 5.6 with no

optical elements between them, the trajectory of the ion in the x̂-direction to first-order is

defined as

 x2(z)

tan(α2(z))

 =

 (x2|x1) (x2|tanα1)

(tanα2|x1) (tanα2|tanα1)


 x1

tan(α1)

 (5.4)

where terms of the form (B|A) are the transport matrix elements that detail the path of
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Figure 5.4 Ratio of 10B in focal plane of S800 to incident beam rate as a figure of merit
for determining suitability of beam probe. Following run 143 and retuning of the beam, the
calibration is lost in the non-intercepting probe Z001IC. Red dashed lines indicate target
changes, and black dashed lines indicate changes to the experimental setup that would effect
the beam rate.

the projectile from profile plane 1 |A) to profile plane 2 (B|. The ŷ-direction have a similar

relation with position y and angle β. The equation can be reduced by introducing the

conjugate momenta a, b where a = vx/v and b = vy/v where v is the speed of the ion:

 x(z)

a(z)

 =

 (x|x) (x|a)

(a|x) (a|a)


 x1

a1

 (5.5)

where the subscripts have been dropped in the matrix element notation now.

For the S800, the dipole magnets operate with a field By = B0 6= 0, Bx = Bz = 0 where

ẑ is the beam axis. This optical ‘lens’ is placed between the two profile planes of Figure 5.6.

Due to the Lorentz force, ions travel in circles around the magnetic field such that for an ion

of velocity ~v = vz ẑ
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Beam

Figure 5.5 Schematic depicting the S800 focal plane detector suite. The Hodoscope was not
utilized in this study [74].

~F = Q
(
~v × ~B

)
= −QvzByx̂ (5.6)

where x̂ is deemed the dispersive direction and ŷ is the non-dispersive direction. For ions of

different magnetic rigidities (see Section 5.1.2 for definition) in a field of constant magnetic

flux, the gyroscopic radius (ρ) is defined as

ρ = ρ0(1 + δp) (5.7)

where ρ0 is the trajectory of a central ray through the field and δp =
p−p0
p0

is the momentum

deviation from the central ray. Since the momentum and charge of the ion are constant

through the magnetic field, δp remains the same between the two profile planes and Equation

5.5 can be expanded as
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Figure 5.6 Deviations of a particle from the optic axis in a drift length l = z2 − z1. Taken
from Reference [75].


x2

a2

δp

 =


(x|x) (x|a) (x|δp)

(a|x) (a|a) (a|δp)

0 0 1




x1

a1

δp

 . (5.8)

Definitions for the transport matrix elements can be found in Reference [75].

5.2.1.2 Dispersion Matching

The secondary 10B beam, isolated by the A1900 Fragment Separator, was transported

through the analysis line of the S800 spectrograph (Figure 5.3). The analysis line con-

sists of four dipole and five quadrupole triplet magnets, and has two modes of operation:

focused mode and dispersion matched mode. Focus mode transports the beam to the focal

plane such that the image is chromatic, and the momentum resolution is determined by the

momentum spread of the beam. Dispersion matched mode operates such that the momen-

tum dispersion of the analysis line is compensated for in the dipole magnets of the S800, and

the momentum resolution is optimized with all other experimental conditions held constant.
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Figure 5.7 Schematic layout of the incident particle 1 and the outgoing particle 2 relative to
the beam and spectrometer. Taken from Reference [77].

For this study, the dispersion matched mode was chosen for optimal energy resolution.

In the S800 spectrograph, profile plane 1 is at the entrance to the analysis line and profile

plane 2 is the focal plane. As one can see in Figure 5.3, many optical devices are placed

between the profile planes, each with an associated transfer matrix. Following the procedure

of Reference [76] and discussion by Reference [77], one can follow the ion from the entrance

to the analysis line to the target position, from the scattered ion to the focal plane in the

dispersive direction as


xfp

afp

δfp

 = S


x2

a2

δ2


Behind
target

←

a

T

a

Target
transformation

←


x1

a1

δ0


In front
of target

← B


x0

a0

δ0


Entrance to
analysis line

. (5.9)

where the conjugate momenta a, b have been replaced with the ion’s angle with respect to

the beam. So, for a particle entering the analysis line with coordinates (x0, θ0, δ0) where δ is

the beam dispersion, Equation 5.9 can be interpreted as an ion being transported down the
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beam line (matrix B) to the target position (x1, θ1, δ1) where the optical elements do not

change the energy (δ1 = δ0). The target transformation includes the information, illustrated

in Figure 5.7 about the reaction angle α and an arbitrary target angle φT such that the

‘absolute’ scattering angle is

β = α + θ2 − θ1 = α + Θ (5.10)

where Θ is the relative scattering angle and the target function T = Cos(α − φT )/Cos(φT )

relates the transformation x1 → x2 as

x2 = Tx1. (5.11)

Furthermore,

δfp = δ2 = KΘ + Cδ0 (5.12)

where K is a kinematic broadening factor (K = (1/pout)(∂pout/∂α)) and C is referred to as

the dispersion matching factor [78] (though C shares the same name,it does not define the

dispersion matching discussed here).

The transformation to the focal plane can be defined as [79]
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xfp = x0(s11b11T + s12b21)

+ θ0(s11b12T + s12b22)

+ δ0(s11b16T + s12b26 + s16C)

+ Θ(s22 + s26K) (5.13)

θfp = x0(s21b11T + s22b21)

+ θ0(s21b12T + s22b22)

+ δ0(s21b16T + s22b26 + s26C)

+ Θ(s22 + s26K) (5.14)

where suffices 1,2, and 6 of the matrix elements represent x, θ and relative momentum differ-

ence δ, respectively for the matrices B = bµν and S = sµν where µ, ν = 1, 2, 6. The matrix

elements in the notation of Section 5.2.1.1 are, for example, s11 = (x|x)S , b16 = (x|δ)B ,

and b26 = (θ|δ)B where subscripts S,B denote matrix elements for the spectrometer and

extracted beam transport in the analysis line, respectively.

For perfect dispersion matching in position and angle, the coefficients of θ0,Θ, and δ0

must be zero. If these conditions are met for Equation 5.13, but not Equation 5.14, it is

referred to as ‘lateral dispersion matching.’ If the conditions are satisfied for both Equations

5.13 and 5.14, it is referred to as ‘lateral and angular dispersion matching.’

As mentioned earlier, the S800 spectrograph can be operated in a chromatic (no dispersion

matching) mode or in an achromatic (lateral dispersion matching) mode. Since the S800

spectrograph will be solely used to both identify and reconstruct the energies of the 10B
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Figure 5.8 Cartoon depiction of lateral dispersion-matching, adapted from Reference [77].
Dispersion of rays with different momenta is compensated by the dispersion of the spectrom-
eter.

ejectiles, it was operated in the achromatic mode. Figure 5.8 illustrates the lateral dispersion

matching. Set in this mode, the momentum dispersion of the primary beam entering the

spectrograph is compensated by tuning the B, S matrix elements, focusing particles of the

same momentum to the same position in the spectrograph.

Cancellation of the coefficients of θ0 in Equation 5.13 requires

s12 = −s16K. (5.15)

Tuning for this condition could come from changing the focal plane location, but this changes

the dispersion and resolution. More practically, one can tune element s12 using quadrupoles

to adjust the position and angle correlation [76] since s12 ∼ (x|θ)S .

For cancellation of the coefficients of δ0 in Equation 5.13, the requirement can be rear-

ranged as,
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b16 = −s16

s11

(
C

T
− b26

K

T

)
. (5.16)

For K = 0 (light particle on heavy target), the dispersion matching condition has the size

of the beam spot in the focal plane independent of the dispersion of the beam:

DB = −
(
DS
MS

)
(5.17)

where DB = b16 is the dispersion of the analysis line,
(
DS
MS

)
=

s16
s11

, DS is the dispersion of

the spectrometer, MS is the magnification of the spectrometer, and C
T ∼ 1.

For the matched system, the remaining term of Equation 5.13 will define the resolution.

Substituting Equation 5.15 into the coefficient of x0, the overall magnification is defined as

Mov = s11b11T − s16b21K. (5.18)

The resolving power of the system is then [76]

R =

(
1

2x0

)(
s16

Mov

)
(5.19)

where x0 is the beam spot size at the S800 image, s16 = DS , Mov = MS , and energy

resolution is given by

RE =
1

R
=

2MSx0

DS
. (5.20)

In practice, the S800 spectrograph dispersion matching, shown in Equation 5.17, can

be checked by observing the position resolution of a state in the first cathode readout drift
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chambers (CRDC). For the S800 spectrograph DS = −9.6 cm/%, MS = −0.89, and in

dispersion matched mode the analysis line has a dispersion DB = −10.8 cm/% [80]. Further

more, for an object beam spot of 0.05 cm, the maximum achievable resolution is 1/10,000

(for Equation 5.20, R = 2×0.05
10.8 = 0.009%), and Equation 5.17 holds to better than 0.1%.

The momentum acceptance was limited to ±0.25% in the A1900 fragment separator to

allow for an unobstructed transmission of the beam to the focal plane since the momentum

spread of the beam at the target position of the S800 spectrograph is large in dispersion

matched mode. With this momentum spread, and the dispersion DB of the analysis line,

the beam spot on target was about 5.3 cm.

5.2.1.3 Focal Plane Detectors

After passing through the dipoles of the S800 spectrometer, the 10B ejectiles are then de-

tected and tracked in the S800 focal plane detector array [72]. In this experiment, the focal

plane detector suite consisted of detectors for measuring the trajectory, position, energy loss,

and time-of-flight information of the 10B.

The position and trajectory of the 10B are measured using two cathode readout drift

chambers (CRDCs) separated by 1073 mm, as shown in Figure 5.9. The CRDCs have an

active area of 30 cm×59 cm and an active depth of 1.5 cm, with momentum dispersion along

the 59 cm direction [72]. Each CRDC has a position resolution of about 0.5 mm in each

direction [24]. The CRDCs were filled with a mixture of 20% isobutane and 80% carbon

tetrafluoride at a pressure of 50 Torr [72]. A negative bias voltage is applied across the

CRDC in the y direction. The gas is ionized by projectiles passing through and the released

electrons drift toward an anode wire, held at a constant voltage, where they are collected.

Calibration procedures for the CRDC signals are described in Chapter 6.
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Figure 5.9 Layout of CRDC detectors and cartoon of cathode position determination. Figure
taken originally from Reference [72], modified by Wes Hitt in Reference [81]

To determine the x position of the projectile, a cathode consisting of 224, 2.54 mm pads

has charge induced on each pad from the ionization electrons drifting toward the anode [72].

A typical image charge distribution is shown in Figure 5.9. A Gaussian distribution was fit

to the image charge on the pads, and the centroid defines the x position.

To determine the y position of the projectile, the drift time of the ionized electrons from

the projectile position to the anode is utilized. The drift time is determined by the difference

between the anode signal time and the event stop signal from the E1 scintillator further down

the beam line of the focal plane (the E1 scintillator is described below).

Following CRDC 2, is an ionization chamber consisting of 16 one-inch anodes and filled

with a mixture of P10 gas (90% argon, 10% methane) at a pressure of 140 Torr to measure
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the energy loss of the reacted beam [72]. The projectile ionizes the gas as it passes through

with positive ions being collected at the cathode and the electrons are collected at the anode,

where the signal here represents the energy loss through the medium. As noted in Equation

5.3, the energy loss of a particle through a medium is proportional to the square charge (Z2)

of the projectile, allowing determination of the atomic number for particle identification

(discussed in Chapter 6).

Downstream of the ionization chamber in the E1 position of the focal plane is a large

area (30×59 cm) thin (5 mm thick) plastic scintillator [25]. The E1 scintillator has photo-

multiplier tubes positioned at the top and bottom, which give energy, position, and timing

information for the projectile. The 5 mm thick E1 scintillator was used in this experiment

since the signal obtained can be related to energy loss through the scintillator. Though the

energy loss signal was not used in this study for particle identification, the energy loss signal

helped to reduce additional background (see Chapter 6). The timing of the signal, relative

to the RF-signal of the cyclotrons, was used to measure the time-of-flight of the particles.

5.2.1.4 Trajectory Reconstruction in the S800 Spectrograph

The trajectory of the ejected 10B is reconstructed by using the 2 CRDCs in the focal plane

of the S800 spectrograph. The target position coordinates are then reconstructed through

a ray tracing procedure to relate the focal plane coordinates to the target position. The

ray tracing procedure is accomplished by fitting the measured magnetic fields with Enge

functions of the form

E(z) =
1

1 + Exp[P (z)]
(5.21)
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where z is the direction of a reference path of the beam and P (z) is a fifth order polynomial

chosen to fifth order such that the error in the mapping is comparable to the focal plane

detectors of the S800 spectrograph [24]. This information is then used as input into the code

COSY Infinity [82] to produce an inverted matrix (“inverse map”) to relate the focal plane

and target position coordinates.

The analytic approach to the inverse map has the benefit of relating positions and angles

measured in the focal plane to positions, angles, and energy at the target position. In first

order, the inverse mapping appears as

(dta, yta, ata, bta) = S−1(xfp, yfp, afp, bfp)

=



(dta|xfp) (dta|yfp) (dta|afp) (dta|bfp)

(yta|xfp) (yta|yfp) (yta|afp) (yta|bfp)

(ata|xfp) (ata|yfp) (ata|afp) (ata|bfp)

(bta|xfp) (bta|yfp) (bta|afp) (bta|bfp)





xfp

yfp

afp

bfp


(5.22)

where focal plane coordinates end in “fp” and target position coordinates end in “ta.” x(a)

refers to the dispersive position (angle) and y(b) refers to the non-dispersive position (an-

gle). Since the dispersive direction is sensitive to the energy spread of the beam, as dis-

cussed in Section 5.2.1.1, given the four degrees of freedom as input from the focal plane

(xfp, yfp, afp, bfp), one can choose two of the three degrees of freedom in the output for the

dispersive direction at the target position. dta is the fractional energy spread of the beam

dta =
E − E0

E0
(5.23)
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where E0 is the energy of a particle traveling along the reference path through the spectrom-

eter.

Focal plane position calculations and results of the ray tracing are found in Chapter 6.

5.2.1.5 Angular Resolution Improvement in Non-Dispersive Direction

The energy resolution is determined by the thickness of the reaction target, the momentum

kick due to γ-emission of the ejectile, and from the intrinsic resolution of the S800 spectrom-

eter. Optimizing the dispersion matching allows for the best possible reconstruction of the

excitation energy of the target residual (see Section 6.3), where the momentum spread of

the beam and the angular resolution play a role.

More importantly, to isolate the IVGMR from other ∆S = 0, ∆T = 1 events, the best

possible angular resolution is crucial. This is because a multipole decomposition analysis

(see Section 7.1) is implemented, where the shape of the cross section angular distributions

are used to isolate the ∆L = 0 components.

To accomplish this, the beam was defocussed in the non-dispersive direction. It has been

observed previously [37] that slightly defocussing the beam in the non-dispersive direction

introduces a correlation between the target position variables yta and bta as shown in the

left panel of Figure 5.10. To observe the correlation, the unreacted 10Be beam is transported

to the focal plane of the S800 spectrograph. The total spread in bta in this setting is 40

mrad . Since the correlation is a single-valued function, a fit of the data can interpolate the

correlation and thereby straighten it out. To this end, a function of the form

bta = a+ b ATan(c+ d ∗ yta) (5.24)
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Figure 5.10 (Left) Effect of introduction of correlation in non-dispersive coordinates YTA
and BTA through defocusing of the beam. (Right) Result of polynomial fit to correlation in
YTA and BTA

was fit for the parameters a, b, c and d to correct for the correlation, as shown in the right

panel of Figure 5.10. The correction resulted in an improved spread in bta of 27 mrad.

5.2.2 Gamma Ray Detection

The driving motivation behind this measurement is the ability to isolate the IVGMR from

the IVSGMR as described in Chapter 1. The ability to do this is dependent upon sepa-

rating spin-transfer reactions from non-spin-transfer reactions. By using the (10Be,10B+γ)

probe, isolation of the isovector, non-spin-transfer reactions is possible through a coincident

measurement of the 10B ejectile and an associated gamma ray “tag” of non-spin-transfer re-

actions, as described in Section 2.2. The 10B ejectile is measured in the S800 spectrograph’s

focal plane, as described in the previous section. For detecting gamma rays emitted in-flight

by the 10B, it was crucial to have the highest possible signal to noise ratio for measurement
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Figure 5.11 Linear attenuation coefficient as a function of photon energy in germanium. The
components for the photoelectric absorption, Compton scattering, and pair production are
shown as well as the total sum µtotal. Figure taken from Reference [83]

of the gamma of interest, therefore the Gamma-Ray Energy Tracking In-beam Nuclear Array

(GRETINA) [73] was used for this measurement.

Electromagnetic radiation can interact with material in several ways, and is well described

in Reference [71]. The probability that a photon will undergo an interaction per unit path

length traveled in a material is called the linear attenuation coefficient, µ, such that a beam

of monoenergetic photons incident upon a material of thickness t will be attenuated to an

intensity I from an initial intensity before passing through the material I0:

I = I0 Exp[−µt]. (5.25)

Here µ is described by three processes that remove the gamma ray from the beam either by
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absorption or by scattering away from the detector:

µtotal = µpe + µcs + µpp (5.26)

were µpe describes photoelectric absorption, µcs describes Compton scattering, and µpp de-

scribes pair production. The relative size of each contribution is shown in Figure 5.11. A

gamma ray incident on the germanium detector and undergoing photoelectric absorption

transfers its entire energy to the detection material, releasing a photoelectron for detection.

This is the dominant process for low energy gammas, up to about 0.2 MeV. Compton scat-

tering is the dominant process up to about 8 MeV. In this process, the incident gamma ray

undergoes an inelastic collision with an electron, resulting in a scattered photon with an

energy less than the incident gamma ray and a free electron with an energy of that lost by

the incident gamma ray. Finally, in pair production the gamma ray is of sufficient energy

to produce an electron and positron pair that carry off the remaining energy of the gamma

ray in the form of kinetic energy. This is the dominant process above 8 MeV, but is first

energetically possible at 1022 keV since the rest mass of both the electron and positron is

511 keV. For this experiment, the gamma ray energies of interest are well below the region

where pair production processes dominant, and photoabsorption and Compton scattering

are the primary methods of interaction with the detector material.

In a measured gamma ray spectrum, there can be a 1022 keV peak due to the pair

production process. As discussed in Section 2.2, the transition energy of interest in this

experiment is of 1022 keV. This is not an issue in this experiment since the pair production

peak is not observed in the coincident data (See Chapter 6). The measured gamma ray is

from in-flight decay of the ejectile, and requires Doppler-correction as defined by
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Eγ =
Eγ,lab(1− βCosθ)

1− β2
(5.27)

where Eγ is the Doppler-corrected energy of the gamma ray, θ is the angle between the

emitted gamma ray and the emitting particle, and β = v/c, where v is the velocity of the

emitting particle and c is the speed of light. The Doppler-correction process corrects for the

smearing observed from the in-flight decay at relativistic speeds.

As can be seen in Equation 5.27, the Doppler-corrected energy of the gamma rays are

dependent upon Eγ , lab, β, and θ. This means that the broadening of the Doppler-corrected

gamma ray not only depends on the uncertainty in the velocity of the particle (β), but also

the uncertainty in the intrinsic energy resolution of the detector (∆E) and the uncertainty

in the angle between the gamma ray and the scattered projectile (∆θ). Since ∆E and ∆θ

are gamma detector dependent, to optimize the resolution, it is best to choose a detector

system with excellent spatial resolution. It is also important to choose a detector with high

efficiency as well as high resolution to increase the signal-to-noise ratio of the measurement

to reduce the uncertainty that will be present when subtracting off the background present

underneath the peak.

At the time of running the experiment, there were three gamma detection systems at

the NSCL: the Caesium Iodide Array (CAESAR) [84], the Segmented Germanium Array

(SeGA) [85], and GRETINA [73]. The cross section for the IVGMR is small, even for the

lightest elements probed (see Section 2.3). As such, given a choice of gamma-ray detector

systems, not only is energy resolution critical, but so is detector efficiency. CAESAR is

a sodium-doped caesium iodide (CsI(Na)) array that provides high efficiency gamma ray

measurements, but with an intrinsic energy resolution of 10% FWHM for a 1 MeV gamma-

74



Figure 5.12 Schematic drawing of (a) four crystals packed into one module, two A-type crys-
tals and two B-type crystals and (b) an individual crystal showing the electrical segmentation
of its outer contact. Figure from Reference [73]

ray after Doppler correction, CAESAR did not have the optimum energy resolution [84]. The

latter two detection systems are composed high-purity germanium (HPGe) detectors, and

while delivering good efficiency, HPGe systems typically have intrinsic energy resolutions of

about 0.2% for 1 MeV gamma-rays after Doppler-correction. For this study, GRETINA was

chosen as the optimal detector system.

5.2.2.1 GRETINA and Detector Placement

GRETINA [73] is placed around the reaction target for detection of gamma-rays in coin-

cidence with the 10B observed in the S800 focal plane. GRETINA is an array of twenty

eight 36-fold segmented HPGe crystals designed for detection and tracking of gamma-rays

scattering into the germanium crystals. Each crystal is about 90 mm in length and 80 mm

in diameter with segmentation into six slices and six regions, with two crystal geometries

implemented such that the crystals may be grouped by fours to cover 1/4 of the full 4π solid

angle as shown in Figure 5.12.

With each GRETINA module containing four of the 28 crystals, seven modules were

available at the time of the experiment. Each module could be placed in a variety of positions
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Figure 5.13 Experimental setup of the GRETINA detector array with all 7 detectors placed
in their 90◦ location surrounding the S800 spectrograph target position. Cartoon representa-
tions of the reaction of interest are drawn on the photograph. Photograph taken by Shumpei
Noji.

surrounding the target location of the S800 spectrograph. At the NSCL, detector positions

were offered at 58◦ (4 positions), 90◦ (8 positions), and 122◦ (4 positions) relative to the

beam direction. In this experiment, all seven modules populated 90◦ positions in the detector

frame as shown in Figure 5.13, where the reaction of interest is illustrated on the picture.

The modular nature of GRETINA, as well as the electrical segmentation of the crystals,

work to improve the resolution of the detector system beyond just the intrinsic energy reso-

lution of germanium because the detector system can be arranged for optimal experimental

conditions and one can obtain sub-segment resolutions. The Doppler-corrected energy reso-

lution depends on three factors, as seen in Equation 5.27: the intrinsic energy resolution of

germanium (∆Eintr), the uncertainty in the source velocity due to the slowing down of the

projectile in the target (∆β), and the uncertainty in the emission angle of the gamma ray

due to the finite opening angle of the gamma-ray detector and ambiguity of the scattered
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Figure 5.14 Cartoon depiction of angular uncertainty for forward angled detectors due to
large beam spot as a result of dispersion matching. Image not drawn to scale.

particle (∆θ). The segmentation of the germanium crystals, as shown in Figure 5.12, reduce

the angular uncertainty of the Doppler-corrected gamma-ray by allowing precise determina-

tion of the hit position with in the crystal, significantly improving the reconstructed energy

resolution.

However, a large contribution to the angular uncertainty comes from the large beam spot

size necessary for dispersion matching, see Section 5.2.1.2. As shown in Figure 5.14, the

large beam spot on the target introduces ambiguity in the emission angle at forward angles,

since reactions at the bottom of the target appear in the detector the same as reaction at

the top of the target. By placing the detectors at 90◦ with respect to the beam line at the

target position, this effect is reduced. The remaining contribution to the angular uncertainty

in the measurement is then a result of detector geometry.

In fact, in Table 5.1, the relevant parameters for using a simulation [28] of the resolution

and detection efficiency of GRETINA at the NSCL for the 1.022 MeV transition in 10B

are listed and show the improvement due to detector position selection. It was decided

from this information to use the configuration of all detectors placed at 90◦ surrounding

the target position since the gain in resolution was critical, while the loss in efficiency was
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Implemented Alternative
GRETINA Detector Positions All at 90◦ 4 at 58◦, 3 at 90◦
10Be Beam Energy 100 MeV/u
28Si Target Thickness 40 mg/cm2

Beam Spot Size, Dispersive Direction 50 mm
Resolution Efficiency Resolution Efficiency

1.022 MeV ∆S = 0,∆T = 1 Tag 1.9% 9.4% 4.2% 11.7%

Table 5.1 Relevant parameters used in the simulation of GRETINA resolution and detection
efficiency of the 1.022 MeV transition in 10B [28]. The Implemented column represents the
configuration used in this experiment. The Alternative column represents another possible
configuration for measurement.

tolerable. The requirement of higher energy resolution of the Doppler-reconstructed gamma

ray stems from the method of separating the gamma signal from the background in the

spectrum. This is done through a “side-band study” where the background next to the

signal is used to characterize the background of the gamma peak. Further details of the

Doppler-reconstruction and observed resolutions are found in Section 6.1.2.2.
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Chapter 6

Data Analysis

The purpose of this chapter is to take the raw data obtained in Chapter 5 and convert

it into the physical quantities used to identify the IVGMR: excitation energy, scattering

angle, and differential cross-sections. Data was taken in the summer of 2012 during the

S800+GRETINA campaign at the NSCL. Data taken were analyzed “online” during the

experimental run using the SpecTcl package at the NSCL [86], which was modified to support

the attached GRETINA data acquisition system [73]. The “online” mode served to ensure

quality data during the experimental run, and the full “offline” analysis of the data was

performed using the analysis package GrROOT [87].

The analysis was performed in three steps: event building, calibration, and physical

calculations. To perform the event building, a raw event file, containing detector response

information along with a time stamp, is analyzed and events are time correlated to produce a

reduced data file, termed an “event built” file. Calibrations are performed for each detector

on the event built file, to produce a calibrated event file. The physical quantities of interest

are then determined by calculations performed on the calibrated signals from each detector.
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Figure 6.1 Diagram depicting hole and slit pattern in 24.603”x13.835”x0.250” CRDC masks

6.1 Calibrations

6.1.1 S800 Calibrations

As described in Section 5.2.1, the data coming from the S800 is from the detector suite in the

focal plane of the spectrograph. The goal of using the S800 spectrograph is to reconstruct

the excitation energy and scattering angle at the target position by passing the reacted beam

through the S800 focal plane. Timing information comes from the E1 scintillator at the end

of the focal plane, and comes from the internal clock in the data acquisition system, which

is already calibrated as 100 ps per channel in the time to digital converter for the scintillator

photo-multiplier tubes. The particle identification uses the timing information and energy

loss through the ionization chamber. A description of the particle identification is in Section

6.2. To reconstruct the excitation energy and scattering angle of the reaction as described in

Section 5.2.1.4, the tracking information from the Cathode Readout Drift Counters (CRDCs)

is necessary to relate the detector signals to the projectile position in space.

80



X1 (mm)

300 200 100 0 100 200 300

Y
1

 (
m

m
)

100

50

0

50

100

Figure 6.2 Sample spectrum of CRDC1. Calibration is complete in spectrum.

The position calibration of the CRDC is performed by remotely placing a thick tungsten

plate with a precision slit and hole pattern directly up stream of the CRDC to be calibrated,

see Figure 6.1. Particles that are detected in the CRDC are those that have passed through

a hole in the tungsten plate, and the CRDC spectrum is then an impression of the slit and

hole pattern illuminated as shown in Figure 6.2.

The calibration process involves fitting the mask data with first-order polynomials, re-

lating the known mask hole positions (in mm) to the channel number from the data, where

the units are pads in the x-direction and ns in the y-direction:

x1,2(mm) = m1,2(mm/pad)× x1,2(pad) + b1,2(mm) (6.1)

y1,2(mm) = n1,2(mm/ns)× y1,2(ns) + c1,2(mm). (6.2)

Each CRDC was calibrated separately. The slope in the x-direction (m1,2) is determined
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from the charge induced on cathode, and is fixed by the segmentation of the cathode pads

at 2.54 mm/pad. The slope in the y-direction (n1,2) is determined from the drift velocity of

the electrons to the anode wire. The offsets in both directions (b1,2, c1,2) are set such that

the corner of the “L” shape in the mask shown in Figure 6.1 is at 0 mm. The results of the

mask calibration are listed in Table 6.1.

The slope in the y-direction, not being defined with a fixed geometry as the other param-

eters are, is subject to the most variability. The drift velocity of the electrons in the CRDC

is a dependent upon the gas composition and pressure, as well as other experimental pa-

rameters that can vary minorly throughout the experiment. It was noted that the measured

y-position of the 10B ejectiles drifted smoothly as a function of run number, indicating the

the calibration was also changing smoothly as a function of run number. By observing the

channel in which the centroid of the ejectile’s y-distribution appears, and comparing this to

the channel in which the centroid of the ejectile’s y-distribution appears directly following

calibration, the slope can be corrected for the specific run number as

ncorrected(mm/ns) = nmeasured(mm/ns)×
yreference(channel)

yobserved(channel)
(6.3)

where ncorrected is the corrected drift velocity, nmeasured is the original drift velocity as

determined in the mask calibration, yreference is the position of the ejectile directly following

the original mask calibration, and yobserved is the position of the ejectile for the run of

interest. The result of the correction is plotted in Figure 6.3. The most prominent fluctuation

in the drift velocity is near run number 200. This corresponds to a spread in the channel

(Equation 6.3) centroid of about channel 60, but the full width at half maximum of the

yobserved signal is channel 92.1. The smooth change in the drift velocity was fit with a
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m1 b1 m2 b2 n1 c1 n2 c2
2.54 -281.737 2.54 -279.867 -0.074 -107.098 0.072 105.534

Table 6.1 Mask calibration parameter values obtained from CRDC mask measurement fitting.
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Figure 6.3 Polynomial fit of CRDC TAC data to track changes in electron drift velocity in
the CRDC fill gas.

fourth-order polynomial to account for the smaller fluctuations observed in the changes to

the drift velocity. Fortunately, there were no long periods without beam in the experiment,

so each hour long run number can be used for the fit since it correlates well with time. The

most prominent fluctuation near run number 200 is a small percentage of the total data, and

is averaged out by the fitting. A mask measurement taken half-way through the experimental

run confirmed the calibration to be consistent with the extrapolated measurement.

The ray tracing described in Section 5.2.1.4, used to determine the target position track-

ing parameters, depends upon the focal plane positions and and angles in the dispersive and

non-dispersive directions. The focal plane tracking parameters are defined as
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xfp = x1 (6.4)

yfp = y1 (6.5)

afp = ATan
[
(x1 − x2)/zsep

]
(6.6)

bfp = ATan
[
(y1 − y2)/zsep

]
(6.7)

where xfp(yfp) and afp(bfp) are the (non-)dispersive positions and angles, respectively,

and zsep = 1073 mm is the distance between the two CRDCs. The parameters from Equa-

tions 6.4-6.7 are used as input into Equation 5.22 to produce the target position tracking

parameters.

6.1.2 GRETINA Calibrations

6.1.2.1 Source Calibrations

Calibration of the absolute energy and efficiency of the GRETINA detectors was performed

using four gamma sources placed at the target position of the S800: 56Co, 60Co, 226Ra,

and 152Eu. Since the GRETINA detection system was delivered to this experimental study

in a precalibrated state, source measurements were taken at the beginng and end of the

experimental run to confirm the accuracy of the calibration.

Data were taken with the sources, and the spectra were fit with Lorentzians on top of a

linear background in the region of the peak. Lorentzians are fit to the gamma peak since the

signal is of Lorentzian shape. The centroid of the Lorentzian represents the observed energy

of the gamma ray from the source. All reference energies used in this comparison are listed
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Source γ transitions used in calibration (keV)
56Co 846.8 1037.9 1175.1 1238.3 1360.2 1771.4 2015.2 2034.8

2598.5 3202.0 3253.4 3273.0 3451.2 3548.3
60Co 1173.2 1332.5
152Eu* 121.8 244.7 344.3 411.1 444.0 778.9 867.4 964.1

1112.1 1213.0 1299.2 1408.0
226Ra 186.2 242.0 295.2 351.9 609.3 768.4 934.1 1120.3

1238.1 1377.7 1509.2 1729.6 1764.5 1847.4 2118.5 2204.1
2447.7

* source used for efficiency

Table 6.2 Reference energies for verification of gamma ray energy calibration and efficiency.

in Table 6.2. As shown in Figure 6.4, the observed energies agree well with the known data,

verifying the energy calibration of the detector system.

To verify the efficiency, the 152Eu source was used since it has well known emission

probabilities for the gamma rays and the activity of the source has been measured. The

efficiency is defined as

ε(%) =
Nγ

A× t× εemm
× 100 (6.8)

where ε is the measured efficiency in percent, Nγ is the number of counts in the photo-peak,

A is the activity of the source, t is the duration of the calibration run adjusted for deadtime

in the data acquisition system, and εemm is the emission probability of the photopeak. The

absolute activity of the 152Eu source was measured to be 8.46 µCi on May 1, 1978, and with

a well-known half-life of 13.537±0.006 years, the current absolute activity was calculated.

The results of the efficiency measurement are summarized in Figure 6.5. The red data points

are those data points that were measured at the end of the experimental run, and the black

data points are the known efficiencies of the detector system. The data taken verifies that

the observed efficiency is consistent with the reported values. To estimate the efficiency of
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Figure 6.4 Comparison of known and measured peak energies for gamma sources 56Co, 60Co,
226Ra, and 152Eu.

the gamma rays observed from the de-excitation of the 10B, the reported data was fit with

the power-law function

ε(Eγ) = 595.66× Exp[−0.675× Log[Eγ + 148.9]] (6.9)

where the fit is shown as the dashed blue line in Figure 6.5. Based upon this fit, the estimated

efficiency for the 1022 keV transition from 10B was 5.06%± 0.05%.
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Figure 6.5 GRETINA efficiency as measured by 152Eu. Observed values are from data taken
during experimental run for comparison with reported efficiencies. The line is fit to the
known data.

6.1.2.2 In-Flight Corrections

In this experiment, the 10B ejectiles from the reaction 28Si(10Be,10B*) are traveling at about

43% of the speed of light when de-excitation occurs. Due to the velocity of the particle, the

energy observed by the detector in the lab frame is Doppler shifted such that at forward

(backward) angles, the measured energies were higher (lower) than in the projectile frame. It

is necessary to know the energy in the projectile frame, as this is the energy that characterizes

the state of the projectiles state. To do this, the observed energies are Doppler-corrected

using Equation 5.27.

To properly perform the Doppler-correction, the direction of the ejectile must be taken

into account. If the beam were to travel along the z-axis, no correction would be necessary

since the beam would be perfectly perpendicular to the target. However, if there is a slight

deviation from perpendicularity of the beam on the target, as can be seen in the left panel
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of Figure 6.6, a correlation exists between the azimuthal scattering angle and the Doppler-

corrected beam energy. To correct for this, a vector is defined from the GRETINA position

data for the scattering angle (θGR, φGR) of the gamma-ray and from the ray traced scattering

angles (θS800, φS800) from the S800 tracking. The term Cos(θ) of the Doppler-correction,

Equation 5.27, is calculated by taking the scalar product of the two vectors:

Cos(θ) =Sin(θGR)× Sin(θS800)×

(Sin(φGR)× Sin(φS800) + Cos(φGR)× Cos(φS800) + Cos(θGR)× Cos(θS800)) .

(6.10)

The result of this correction is shown in the right panel of Figure 6.6. The correction has to

be performed on an event-by-event basis, and for each crystal. The results in Figure 6.6 are

for one of the 28 crystals in GRETINA. Before correction, the FWHM resolution of the 1022

keV peak from 10B was 36.2 keV, and following correction, the observed resolution became

20.2 keV, a 44% increase in resolution.

As shown in Figure 6.7, the Doppler-correction of the beam shifted throughout the experi-

ment. Investigation of this effect showed that the displacement coincided with target changes.

Figure 6.8 shows the effect of the assumed target position for the 1022 keV Doppler-corrected

gamma-ray, when shifting the assumed target position upstream or downstream from the

S800 target position. Since the Doppler-corrected energy is proportional to Cos(θ) as shown

in Equation 5.27, a shift upstream, or in the negative z-direction, causes the scattering angle

of the gamma-ray to appear smaller, and increases the Doppler-corrected energy. Likewise,

a shift down stream, or in the positive z-direction, causes the Doppler-corrected energy to
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Figure 6.6 Correction of Doppler corrected gamma-ray energy for scattering angle of particle.
Results of one crystal is shown.

appear lower.

In the analysis software, the assumed target position was shifted up and down stream

in 0.5 cm steps in a range of 2 cm. For each target placement, the Doppler-corrected peaks

were fit with Lorentzians plus a linear background to extract the position and width. The

correlation between Doppler-corrected energy and assumed target position was found to be

linear, and was used to account for the shift in target position. The corrected target positions

are listed in Table 6.3. The position correction for the Silicon data set is systematically larger

than the correction for the Carbon because the 7.6 cm in diameter Silicon disc was held at

10◦ off from perpendicular to the beam direction. Figure 6.9 shows the corrected gamma-

spectrum for the 1022 keV Doppler-corrected gamma-ray for the target holder position.
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Figure 6.7 Observed energy shift of Doppler corrected 1022 keV gamma-ray due to target
placement inaccuracies. Shifts above and below known energy are a result of the target
placement upstream or downstream, respectively, of the assumed target location.

Data Set Runs Position Correction (mm)
Silicon 122-166 -6.4371
Carbon 167-177 -1.8155
Silicon 178-228 4.6618
Carbon 234-269 -2.3255

Table 6.3 Reference energies for verification of gamma ray energy calibration and efficiency.

6.2 Particle Identification

The S800 spectrograph was tuned to an optimal magnetic rigidity for accepting the 10B

ejectiles. However, the purity of the 10Be incoming beam was of 88%, with contamination

due to 8Li and 12B which is separable in particle identification. The natSi target consisted

of 92.2% 28Si, 4.7% 29Si, and 3.1% 30Si. Since the target was self-supporting, reactions

in addition to the reaction of interest, 28Si(10Be,10B)28Al, were a result of reactions in

any combination of the contaminants. Fortunately, with the spectrograph tuned for the

10B ejectiles, we exploited the energy loss, timing , position, and angle measurements from
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Figure 6.8 Effect of target placement on Doppler-correction of 1022 keV gamma-ray.

the focal plane to isolate the 10B particles of interest from other reaction products and

contaminants.

To identify the particle of interest, the ∆E − ToF method was implemented. As men-

tioned previously (see Section 5.1.2), the energy loss of an ion through a medium is pro-

portional to its proton number squared (Z2). In this way, an energy loss measurement

determines the element passing through the medium, without directly relating which isotope

it is. The time-of-flight (ToF ) measurement analyzes the velocity of the particle, which in

turn relates back to the momentum to charge ratio of the particle as detailed in Equation

5.2. So, given a constant magnetic rigidity (Bρ) and a known flight path length (L), a ToF

measurement will relate the mass to charge of the particle as:

Bρ = γ
mv

q
→ 1

v
= const.× m

q
=
tof

L
. (6.11)
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Figure 6.9 Target holder position corrected spectrum for the 1022 keV Doppler-corrected
gamma-ray.

Therefore a measurement of ∆E − ToF will isolate the isotope of interest.

To properly implement the ToF measurement, the trajectory of the particles through

the beam line must be taken in to account. As shown in Figure 6.10, there is a correlation

between the ToF of the 10B and the trajectory in the dispersive direction. By correcting first

for the linear dependence of the dispersive angle, then the dispersive position, the separation

of the different species in the beam is improved, and the final particle identification (PAID)

spectrum is shown in Figure 6.11, where an arbitrary offset in time has been implemented

to center the 10B at 0 ns.

Figure 6.11 indicates the position of the 10B projectile of interest. The gate applied to

the PID is an ellipse around with the center and radius in T.O.F. and ∆E shown in Table

6.4. The position and radii were determined from Gaussian fits to the 10B signals.
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Figure 6.10 Correlation between ToF and the dispersive direction coordinates afp, xfp

Signal Center Radius
T.O.F. 0.428 ns 4.68 ns

∆E 126.9 a.u. 46.4 a.u.

Table 6.4 Definition of elliptical gate on 10B in PID.

6.3 Excitation Energy Reconstruction

The excitation energy of the 28Al residual of the 28Si(10Be,10B) reaction is reconstructed

in a ‘missing mass’ calculation by relating the reconstructed target position energies (dta)

and angles (ata, bta) of the 10B ejectile to the mass missing in the system. In the following

derivation, the speed of light has been set to 1.

Consider a binary reaction which is denoted as A(a, b)B, where A =28Si, B =28Al,

a =10Be, and b =10B for this study. As shown in Figure 6.12, for a particle participating

in the interaction, m is the mass, p is the momentum, T is the kinetic energy, and θ is the

scattering angle, where the subscript denotes the particle. The conservation of energy and
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Figure 6.11 PID indicating 10B particles. Figure includes corrections to the time-of-flight
spectrum.

linear momentum are expressed as

(m(10Be) + T (10Be)) +m(28Si) = (m∗(10B) + T (10B)) + (m∗(28Al) + T (28Al)) (6.12)

p(10Be) = p(10B) + p(10Al) (6.13)

where the ejectile and residual are left in excited states such that

m∗(28Al) = m(28Al) + EX(28Al) (6.14)

m∗(10B) = m(10B) + EX(10B) (6.15)

where the ∗ indicates an excited nucleus.
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Figure 6.12 Definitions of the kinematic variables in the laboratory frame.

Using the conservation of energy from Equation 6.12,

m∗(28Al) + T (28Al) = (m(10Be) + T (10Be)) +m(28Si)− (m∗(10B) + T (10B)). (6.16)

Rewriting the left-hand side of Equation 6.16, and using Equation 6.13,

m∗(28Al) + T (28Al) =
√
m∗2(28Al) + p2(28Al) (6.17)

=
√
m∗2(28Al) + (p(10Be)− p(10B))2. (6.18)

In the lab frame, 28Si is at rest and the kinetic energy is carried by the 10Be, the excitation

energy of the 28Al can be inferred from the missing mass of the observed 10B. In Equation

6.18, the missing energy and momentum of the 10B are
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Emissing = (m(10Be) + T (10Be)) +m(28Si)− (m∗(10B) + T (10B)) and (6.19)

pmissing = p(10Be)− p(10B). (6.20)

Employing the energy relation E2 = m2 + p2, the missing mass is

mmissing =
√
E2
missing − p2

missing. (6.21)

The excitation energy simplifies to

EX(28Al) = mmissing −m(28Al). (6.22)

In this derivation, the necessary ingredients of the excitation energy calculation are the

masses of each participating nucleus, and the kinetic energy and momenta of 10Be and 10B.

The following five bullet points address each of the terms:

• The masses were obtained from a nuclear data database [88].

• The kinetic energy of the incident 10Be was inferred from the rigidity setting of the

analysis line by the square of Equation 5.2,

(Bρ)2 =
m2v2

Q2
= 2

mE

Q2
. (6.23)

Since E = p2/2m

p2 = 2mE. (6.24)
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Dividing and multiplying by the charge squared, and using the relation E2 = m2 + p2,

p2 =

(
2
mE

Q2

)
Q2 = (Bρ)2Q2 = E2 −m2. (6.25)

Solving for the energy and using the relation E = m+ T ,

E =
√

(BρQ)2 +m2 = m+ T. (6.26)

Therefore, the total kinetic energy of 10Be is

T (10Be) =
√

(BρQ)2 +m2(10Be)−m(10Be). (6.27)

• The kinetic energy of the 10B was calculated on an event-by-event basis using the en-

ergy of a central ray through the spectrograph (T0), calculated as above using Equation

6.27, and the ray traced fractional energy dta as

T (10B) = T0(1 + dta), (6.28)

where dta =
T (10B)−T0

T0

• The momentum of 10Be defines the beam axis along the z-direction as

px(10Be) = py(10Be) = 0 (6.29)

pz(
10Be) = p(10Be). (6.30)
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The total momentum is determined by using the relation E = m + T in the relation

E2 = p2 +m2 and solving for the momentum, such that

p(10Be) =
√
T 2(10Be) + 2T (10Be)m(10Be). (6.31)

• The momentum of the 10B is defined as

px(10B) = p(10B)× Sin ata (6.32)

py(10B) = p(10B)× Sin bta (6.33)

pz(
10B) = p(10B)× Cos θta (6.34)

where ata, bta, and θta are the dispersive, non-dispersive, and overall scattering angle,

respectively, and p(10B) is the total momentum calculated on an event-by-event basis

using the momentum of a central ray through the spectrograph (p0), calculated using

Equation 6.31 for 10B, and the ray traced fractional momentum dtap.

dtap is calculated from its definition

dtap =
p− p0

p0
(6.35)

and solving for p and using Equation 6.31, adapted for 10B,

p = p0(1 + dtap) =
√
T 2(10B) + 2m(10B)T (10B). (6.36)
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Solving back for dtap,

dtap =

√
T 2(10B) + 2m(10B)T (10B)

p0
− 1 (6.37)

where T (10B) is related from Equation 6.28.

The scattering angle of the reaction in the laboratory frame is calculated from the dis-

persive and non-dispersive angles as

θta = ATan
√

Tan(ata)2 + Tan(bta)2. (6.38)

Correlations between the excitation energy and the scattering angle are observed in the

data. The top two panels of Figure 6.13 show this correlation in the coordinates EX , ata, and

bta using the data taken with the 12C target. The 12C target is beneficial for observing and

correcting this effect due to the strong 12C(0+, g.s.)→12B(1+, g.s.) transition. The ground

state peak of 12B appears as a line in the excitation energy versus scattering angle data, as

shown in the top panels of Figure 6.13. Correlations present in the energy and scattering

angle data are corrected for by fitting a line to the peak observed.

The bottom panels of Figure 6.13 shows the effect of the correction for data taken on the

12C target (bottom-left) and on the 28Si target (bottom-right). Indicated on the bottom-left

panel is the ground state of 12B. The correction gives a slight improvement in the excitation

energy resolution of the 12B ground state peak. In the bottom-right panel, there are no

clearly separated states in the 28Si target data, and no clear improvement observed.

The ground state energy calibration for the data sets was done by fitting the ground

state peak in 12B (see Figure 6.13, bottom-left) with a Gaussian plus another Gaussian to
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Figure 6.13 (Top) Correlation between dta and the dispersive and non-dispersive scattering
angles. (Bottom, Left) Effect of correction on 12C(10Be,10B) 12B excitation energy resolu-
tion. The 12C(g.s.)→12B(g.s.) transition is indicated. (Bottom, Right) Effect of correction
on 28Si(10Be,10B)28Al excitation energy resolution.

represent the drop in counts from 10 to 5 MeV. The fit of the ground state peak in the

12C(10Be,10B+γ(0.718 MeV))12B data found the peak to be located at 13.1 MeV, and this

shift has been applied to the presented data. This shift in the energy scale can occur from

the assumption that the rigidity (Bρ) of the beam line is correct and fixed, but the kinematic

enegy of the particles varies due to reactions occuring within the target material. The energy

scale of the 28Al spectrum (see Figure 6.13, bottom-right) was established by an additional

shift of 2.618 MeV to account for the energy loss difference of the beam through the 12C

and 28Si targets. The energy loss through the target was calculated in Lise++ [27].

In the bottom panel of Figure 6.14, below −5 MeV, there appears to be some contam-

ination present in the data. This is likely due to the PID gate from Section 6.2 not fully
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Figure 6.14 (Top) “All ∆E” as described in the text plotted as a function of 10B excitation
energy. A division between good events and background contamination is visible. The
red line shows the “All ∆E” threshold of 15.25 in arbitrary units. (Below) Background
subtracted excitation energy spectrum of 28Al.

isolating the 10B ejectile. Using a convolution of energy loss signals from the ion chamber

and the 5 mm E1 scintillator in the focal plane of the S800, a new signal called “All ∆E”

was defined as

All ∆E = (∆E)I.C. × (∆E)Scint/4000, (6.39)

where 4000 was chosen to scale the units arbitrarily. The top panel of Figure 6.14 shows the

excitation energy of 28Al as a function of the “All ∆E” signal. To the left of the red line is a
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Figure 6.15 (a) Doppler-corrected gamma-ray spectrum. Indicated are the GT and F transi-
tions, which indicate ∆S = 1 and ∆S = 0 reactions, respectively. Also shown is the signal,
along with the side-band used for background subtraction. (b) Excitation energy spectrum
of 12B for the 12C(10Be,10B+γ) reaction. Shown are background subtracted results for
∆S = 0 reactions in black and ∆S = 1 reactions in red. (c) Similar to (b), but for the
28Al(10Be,10B+γ)28Al reaction.

region that is identified as the contamination. To the right of the red line is the “signal” or

usable data. The location of the “All ∆E” gate was determined by reversing the gate and

moving the gate until no features of the 28Al spectrum were observed. A location of 15.25

was determined in this definition of “All ∆E”. The bottom panel of Figure 6.14 shows the

result of gating out the All ∆E background.

6.4 Coincidence Data

Up until this point, all data shown has not included information from the in-flight gamma-

emission of the 10B ejectile. As such, the “singles” data shown includes both spin-transfer
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this figure is the same as in Figure 6.15, but now different regions are highlighted. (Bottom)
Excitation energy spectrum of 28Al for the 28Al(10Be,10B+γ) reaction. The thick black line
is the result of subtraction of background and feeding in the coincidence data.

(∆S = 1) and non-spin-transfer (∆S = 0) contributions and contributions from various other

excited states in 10B. The “coincidence” data is the data where a 10B ejectile is observed

in the focal plane of the S800 along with a gamma ray in GRETINA. The top panel of

Figure 6.15 shows the Doppler-corrected gamma-ray spectrum gated on 10B, where the

spin-transfer and non-spin-transfer tags are indicated as the 718 keV GT transition and the

1022 keV Fermi transition, respectively. The blue hatched region to the right of the signal

is the side-band which is used to characterize the noise under the peak. The broad nature

of the GT transition is due to the long half-life of the 718 keV in 10B (t1/2 =0.71 ns) which

results in the angle for the Doppler reconstruction to be uncertain since the decay will occur〈
zγ
〉

= 14.0 cm down stream of the S800 target; this could not be corrected for on an event-
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by-event basis. Though the GT transition was not well resolved and suffered from a large

background contamination due to excitations in the target and feeding from deexcitation of

the 1.740 MeV state in 10B, it served as a good example for showing spin-transfer reactions.

The bottom panel of Figure 6.15 compares the singles data with coincident data for spin-

transfer and non-spin-transfer reactions for the 12C and 28Si reaction targets. Each data

set gates out the “All ∆E” background (see Section 6.3), and the coincident data has the

side-band background subtracted. Feeding is also taken into account for the coincident data.

Before elaborating on Figure 6.15, the feeding of the 1022 keV peak in the Doppler-

corrected gamma-ray spectrum needs to be detailed. Figure 6.16 shows the results of removal

of counts due to feeding. In the top panel, the 414 keV transition that feeds into the 1022 keV

peak is indicated (see also Figure 2.4). Counts due to this state are corrected for the detector

efficiency of the the gamma ray energies and the branching ratio of the 414 keV transition

to the 1.740 MeV state (52.6%) and subtracted from the data to account for contamination

from this spin-flip transition. The feeding accounted for 8% of the counts in the 1022 keV

Fermi peak. The result of the feeding subtraction is shown in the bottom panel of Figure

6.16.

In the data taken on the 12C target, there appear to be three structural features below 10

MeV, see Figures 6.13 and 6.15. Comparing the singles data with coincidence data in Figure

6.15(b) shows that the data is predominantly spin-transfer in nature because the dominant

spin-transfer reaction 12C(0+,g.s.)→12B(1+,g.s.) does not appear in the Fermi filter. This

data serves as an excellent test for the ability of the probe to separate spin-transfer reactions

from non-spin-transfer reactions. The 12C(0+, g.s.)→12B(1+, g.s.) reaction is indicated in

the bottom-left panel of Figure 6.15. By definition, this is a ∆S = 1 transition (that can be

∆L = 0 or ∆L = 2 in nature, see Table 4.1), and is therefore a spin-transfer reaction. In
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Resolution
EX 2.3 MeV
θ 0.5◦ lab
θ 0.7◦ c.o.m.
Eγ 4.2 keV
Eγ−DC (414 keV peak) 8.4 keV
Eγ−DC (1022 keV peak) 18.1 keV

Efficiencies
Eγ−DC (414 keV peak) 8.3%
Eγ−DC (1022 keV peak) 5.1%

Table 6.5 Relevant experimental resolutions and efficiencies.

the GT gamma-ray gate data, this peak is clearly visible, whereas in the Fermi gamma-ray

gate data does not have this transition, and the small peak under the location of 10B ground

state peak in the ∆S = 0 data can be attributed to the 12C(0+,g.s.)→12B(2+,0.95 MeV)

transition. As a result, the data obtained from the Fermi gamma-ray gate is observed to be

CE reactions of non-spin-transfer nature.

In the data taken on the 28Si target, there is some structure at low excitation energy and a

broad peak near 10 MeV. As in the data taken on the 12C target, the spectrum is dominated

by spin-transfer reactions, but non-spin-transfer reactions were separated . Section 7.1 will

separate the multipoles to determine the individual contributions to the spectra.

6.5 Experimental Resolutions

The experimental resolutions for the excitation energy (EX) and scattering angle (θ) of

the target residual 28Al are listed in Table 6.5, along with the resolutions and efficiencies

of the 1022 keV non-spin-transfer tag and the 414 keV feeding state (see Section 6.1.2.2).

Figure 6.17 shows the manner in which the resolutions of EX and θ were determined. The
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Figure 6.17 Experimental resolutions for scattering angle and excitation energy. (Top Left)
Dispersive scattering angle of unreacted beam through Silicon target. (Top Right) Non-
dispersive scattering angle of unreacted beam through Silicon target. (Bottom) Excitation
energy spectrum for 12C(10Be,10B+γ(0.718 MeV))28Al reaction with indicated energy reso-
lution of 12B ground state.

resolutions and efficiencies of the gamma-rays were determined in Section 6.1.2.2.

In the top two panels of Figure 6.17, the full width at half-maximum (FWHM) resolution

of the dispersive and non-dispersive scattering angles were determined through a measure-

ment of the unreacted beam in the focal plane of the S800. ata was fit with a Gaussian, and

bta was best represented by a Lorentzian. The propagated resolution for the total scattering

angle as described by Equation 6.38 is determined to be 0.5◦ in the lab frame, and 0.7◦ in

the center-of-mass (c.o.m.) frame for the 28Si(10Be,10B)28Al reaction.
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In the bottom panel of Figure 6.17 the FWHM resolution of the EX was determined

by the ground state peak of 12B from data taken for the 12C(10Be,10B+γ(0.718 MeV))12B

reaction. As seen in the figure, there is a strong peak at 0 MeV, which is due to the

12C(0+, g.s.)→12B(1+, g.s.) transition. The distribution was fit with two Gaussians, one

representing the ground state peak of 12B and the tail of the second represents the higher

energy tail of the distribution included in the ground state peak. From this, the EX resolution

was determined to be 2.3 MeV.

In Table 6.5, the energy resolutions of the gamma rays are listed. The Doppler recon-

structed peaks are broader than the non-reconstructed peaks due to Doppler broadening as

described in Section 5.2.2. Doppler reconstructed resolutions and efficiencies are reported

only for the 414 keV and 1022 keV gammas since the 718 keV gamma was not well resolved.

6.6 Cross-section Calculations

With the reaction spectra obtained, the last step in the data analysis before extraction of

the IVGMR from the data can be realized is converting the counts in the 28Al excitation

energy spectrum to the differential cross-section. The bottom panel of Figure 6.16 includes

the result of the background subtracted ∆S = 0, ∆T = 1 coincidence data. When converted

to a differential cross-section spectrum, re-binned near the experimental resolution (2 MeV),

and each energy bin plotted as a function of scattering angle in the c.o.m. frame (θc.o.m.),

the angular distributions are obtained. The scattering angle is separated into 0.5◦ bins for

producing the angular distributions and were comparable to the angular resolutions. The

bin sizes were determined such that there were reasonable statistics in each energy bin for

producing the angular distributions. The excitation energy spectra for each angular bin is
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Figure 6.18 Excitation energy spectrum divided into angular bins used in cross-section cal-
culation for the 28Si(10Be,10B+γ(1.022 MeV))28Al reaction for ∆S = 0 reactions. Uncer-
tainties represented are statistical.

shown in Figure 6.18.

The differential cross-section is defined as

dσ

dΩ
=

Nm
NiNt

1

εγCaL
1

dΩc.o.m.
(6.40)

where Nm refers to the counts in a bin after background subtraction, Ni refers to the number

of incident 10Be ions, Nt refers to the number of 28Si atoms in the target, εγ is the efficiency

of GRETINA for the coincident gamma-ray, Ca is a correction on the acceptance of the S800,

and dΩc.o.m. is the opening angle subtended by the scattering angle in the c.o.m. frame. In

the focal plane, the E1 scintillator provides the start signal for an event, so the efficiencies

of CRDC 1, CRDC 2, and the IC relative to the E1 scintillator for the unreacted beam are
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for the 12C(0+,g.s.)(10Be,10B +γ(0.718 MeV))12B(1+,g.s.) ∆T= 1,∆S= 1 reaction.

determined to be 99.98%, 99.97%, and 98.93%, respectively. Each variable’s determination

is detailed below.

• Nm: The counts in each energy bin of Figure 6.18 are the integrated counts of the

angular distribution associated with the energy bin. To calculate the cross-section from

Equation 6.40, Nm is obtained by energy and angular bins after gamma-coincidence

and background subtraction.

• Ni: The number of incident particles is determined on a run-by-run basis as described

in Section 5.1.3.

• Nt: The number of atoms in the target is determined as the areal number density

of the target. For the natC target (98.88% 12C) with a thickness of 56.33 mg/cm2,

Nt = 2.80 × 1021 cm−2. For the Silicon target the crystalline structure of the natSi

target produces channels for the beam to pass through unreacted, as such the target
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Figure 6.20 Double differential cross section for the 28Si(10Be,10B)28Al reaction, divided into
angular bins. Uncertainties represented are statistical.

was placed at an angle of 10◦ with respect to the beam axis to eliminate any channeling

effects. So, for a natSi target of thickness 150 µm, the beam passed through 152.3 µm

(35.36 mg/cm2) of target material, giving Nt = 7.02× 1021 cm−2.

• εγ : The efficiency of the observed gamma-ray was detailed in Section 6.1.2.2, and is

listed in Table 6.5.

• Ca: The correction of the acceptance is determined in a Monte-Carlo simulation, where

the experimental beam conditions are taken into account. Prior to the development of

the simulation, CE experiments would measure only a small portion of the laboratory

scattering angle [89]. The complex function describing the S800 acceptance is depen-

dent upon the energy (dta), scattering angle (θ), and position (yta) of the particle.
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The simulation produces a three dimensional acceptance matrix, and returns a correc-

tion which can be applied on an event-by-event basis depending on the event’s dta, θ,

and yta. Use of this simulation has been successfully implemented in CE experiments

[90, 91]. Using this method extended the useable scattering angle from 3.9◦ c.o.m. to

4◦ c.o.m.

• L: The live time for each experimental run was determined from the readout of the

data acquisition system. The average live time for the experiment was recorded to be

95%.

• dΩ: The opening angle is obtained for each angular bin as

dΩ = 2π

∫ θf

θi

Sinθdθ (6.41)

where θi and θf are the upper and lower c.o.m. angular bin limits.

Figure 6.19 shows the angular distribution for the peak region in the 28Si(10Be,10B+γ(1.022

MeV))28Al data and for the ground state peak in the 12C(10Be,10B+γ(0.718 MeV))12B data.

The data was converted to differential cross-sections as described above. Figure 6.20 shows

the excitation energy differential cross-section spectra for each angular bin. Since Nm in

Equation 6.40 is for coincidence data with background subtraction, Figures 6.19(a) and 6.20

show cross-sections for ∆T = 1,∆S = 0 reactions. In principle, any angular momentum (∆L)

transfer can occur in this data set. The following chapter includes details of the method of

separation. Figure 6.19(b) shows the ∆T = 1, ∆S = 1 data for the ground state peak in

12B. Both data sets will be decomposed by multipole contributions in Chaper 7.
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Chapter 7

Results

The previous chapter detailed how the experimental data was processed into angular distri-

butions, representing ∆S = 0, ∆T = 1 reactions. Within this data, there are contributions

that are not monopole (∆L = 0), and obscure the IVGMR.

In this chapter, the IVGMR in 28Al is isolated in the spectra for comparison with theo-

retical calculations and determination of strength exhaustion. The first step is to determine

the multipole (∆L) contributions to the spectra with a Multipole Decomposition Analysis

(MDA) using the theoretical differential cross-sections described in Chapter 4. The results

are then obtained for the IVGMR with the ∆L = 0 contribution. Also obtained in this

study are angular distributions for the IVGDR with the ∆L = 1 contribution, which has

been measured experimentally for 28Al. Finally, theoretical calculations of the NEWSR are

compared to the data, as well as calculations of the strength distribution from the RTBA

(see Chapter 3).

7.1 Multipole Decomposition Analysis

The MDA is implemented to disentangle the various multipole contributions to the observed

angular distributions and double differential cross-sections, illustrated in Figures 6.19 and

6.20 for data taken on the 28Si and 12C targets. Figure 6.20 is an example of the sensitivity

of the angular distributions to angular momentum transfer. A strong peak in the θ = 0.25◦
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plot of the double differential cross section near 10 MeV diminishes relative to the remaining

spectrum as the scattering angle increases. This is a good display of monopole (∆L = 0)

behavior, since the angular distribution for the monopole peaks at 0◦ in scattering angle.

To perform the MDA, each energy bin of Figure 6.20 is plotted as an angular distribution

and fit with a linear combination of theoretical (DWBA) cross-sections as

[
dσ

dΩ

]DWBA

total
= a

[
dσ

dΩ

]
∆L=0

+ b

[
dσ

dΩ

]
∆L=1

+ c

[
dσ

dΩ

]
∆L=2

+ · · · (7.1)

where fitting parameters a, b, c, and so on were allowed to vary freely until the total DWBA

cross-section converged to a “best fit” for the data. “Best fit” was defined by the lowest

reduced χ2 value (χ2/N , where N is the number of angular bins less the number of com-

ponents included in the fit). The structural input to the theoretical angular distributions

for the 28Si→28 IVGMR came from the normal-modes calculation as described in Section

4.3.2.2.

As Table 4.1 shows, for a given angular momentum transfer with no spin-transfer, there

exists only one total angular momentum transfer in the target, simplifying the choice of

angular distributions for the MDA. If spin-transfer were were present, the choice of spin-

dipole (∆L = 1, ∆S = 1), for example, would be more complex due to the selection rules

governing angular momentum coupling, and would introduce more systematic uncertainty.

Before performing the MDA, the theoretical angular distributions need to take into ac-

count the experimental angular resolution and the difference in bin size between the data

and calculation. The experimental angular resolution needs to be taken into account because

the angular bin size was comparable to the resolution. The procedure for incorporating the

experimental angular resolution into the DWBA cross-section was to :
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Figure 7.1 Effect of smearing the theoretically calculated angular distributions for the
IVGMR, IVGDR, and IVGQR in the 28Si(10Be,10B(IAS))28Al reaction at 10.0 MeV. Angu-
lar distributions shown are used in the MDA of the peak region of the 28Al double differential
cross section spectrum.

1. Calculate the DWBA angular distributions in steps of 0.5 MeV across the observed

excitation energy range for ∆L = 0,1, 2, 3. Angular distributions were calculated in

0.1◦ increments for 0.0 < θc.o.m. < 8.0.

2. The calculated angular distributions were read into a program to generate the angular

distribution in the laboratory frame.

3. The laboratory frame angular distributions were smeared with the experimental reso-

lution.

4. The smeared angular distributions were converted back to the laboratory frame.

Figures 7.1 and 7.2 shows the original angular distributions, as well as the angular dis-

tributions after smearing with the experimental resolution for the 28Si(10Be,10B+γ(1.022

MeV))28Al (∆S = 0, ∆T = 1) reaction at 10 MeV and 12C(10Be,10B+γ(0.718 MeV))12B

(∆S = 0, ∆T = 1) reactions at 0 MeV, respectively. The smearing of the angular distribu-

tions washes out the sharp maxima and minima of the angular distributions.
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Figure 7.2 Effect of smearing the theoretically calculated angular distribu-
tions for the monopole, dipole, and quadrupole contributions to the 12C(0+,
g.s.)(10Be(0+,g.s.),10B(1+,0.718 MeV))12B(1+,g.s.) reaction. Angular distributions
shown are used in the MDA of the ground state peak in 12B.

7.1.1 12C(0+,g.s.)(10Be,10B+γ(0.718 MeV))12B(1+,g.s.) MDA Re-

sults

12C
∆L = 0 0.615±0.053
∆L = 1 0.266±0.025
∆L = 2 2.102±0.211

Table 7.1 Scaling factors obtained from the MDA fit of the 12C(0+,g.s.)(10Be,10B+γ(0.718
MeV))12B(1+,g.s.) reaction as shown in Figure 7.3. Scaling factors represent the scaling of
the theoretically calculated angular distribution necessary for the sum to represent the data
as shown in Equation 7.1.

The results of the MDA on the ground state peak in the 12B data are shown in Figure

7.3. The data was fit with ∆L = 0, 1 and 2 components. The 12C(0+,g.s.)→12B(1+,g.s.)

transition is GT by definition, so the angular distribution peaks at 0◦ and has strong ∆L = 0

contributions in the MDA. ∆L = 2 contributions can couple to this transition, resulting in

the relatively strong contribution found in the MDA, but also serves to fill out the higher

angles. The ∆L = 1 component from the fit likely comes from contamination from transitions

to the 12B(2−,1.67 MeV) state, since the MDA of the 12B(1+,g.s.) peak was performed on
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the range −2 < EX(12B) ≤ 2 MeV. For this MDA fit, χ2/N = 2.5. The results of the fit

are shown in the fourth column of Table 7.1, where the parameters for ∆L = 0, 1 and 2

represent a, b, and c from Equation 7.1, respectively.

One goal of the analysis of the 28Si(10Be,10B+γ(1.022 MeV))28Al data is to determine

the total exhaustion of the NEWSR (see Chapter 3) observed in this experiment. To do this,

the cross-section for the reaction is calculated in the DWBA formalism, where the cross-

B(GT) (Exp.) B(GT) (Shell Model)
10Be(0+,g.s.)→10B(1+

1,0.718 MeV) 3.51 4.454
12C(0+,g.s.)→12B(1+,g.s.) 0.99 0.995

Table 7.2 Known and calculated GT strength for the 10Be(0+,g.s.)→10B(1+, 0.718 MeV)
transition.

116



section represents the complete exhaustion of the NEWSR at each energy calculated. As

discussed in Chapter 4, the DWBA calculation overestimates the reaction cross-section due

to its treatment of exchange. Additional effects on the calculation come from the choice of

OMP. To account for these effects, the known GT strength for both the probe and target

systems are taken into account, and are listed in in Table 7.2. The scaling to take this into

account is

S′ = S ×
(

B(GT )(SM)

B(GT )(Experiment)

)
10Be→10B

×
(

B(GT )(SM)

B(GT )(Experiment)

)
12C→12B

= 0.615×
(

4.454

3.51

)
×
(

0.995

0.99

)
= 0.784 (7.2)

where SM stands for Shell Model. This scaling factor represents the scaling required to,

in first-order, take into account effect due to exchange and OMP choice for ∆L = 0 cross-

sections calculated in the DWBA.

7.1.2 28Si(10Be,10B+γ(1.022 MeV))28Al MDA Results

Figure 7.4 shows the result of performing the MDA on the peak region of the

28Si(10Be,10B+γ(1.022 MeV))28Al data (see Figure 6.19). In the left panel, the result of

including ∆L = 0, 1, and 2 components are shown. At zero degrees, the ∆L = 0 component

is strongest, and serves to represent the data at the lowest angular bin. The ∆L = 1 com-

ponent best describes the following two angular bins, with ∆L = 2 and the lower multipole

components becoming similar in shape at higher angles, to fill out the remaining region.

The right panel of Figure 7.4 shows the sensitivity of the decomposition to the ∆L = 0

component. Exclusion of the ∆L = 0 component from the MDA raises the reduced χ2 from
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Figure 7.4 MDA of the peak region 6 < EX(28Al) ≤ 12 MeV in the 28Si(10Be, 10B+γ)28Al
reaction. (left) MDA result including the ∆L = 0, 1 and 2 multipoles. (right) MDA fit
excluding the ∆L = 0 monopole, and only fitting with ∆L = 1 and ∆L = 2, to observe the
sensitivity of MDA to the monopole.

χ2/N = 6.3 to χ2/N = 10.0. Exclusion of the ∆L = 0 component raises the ∆L = 2 com-

ponent’s scaling by a factor of 2 and slightly increases the ∆L = 1 component, while failing

to reproduce the shape at low angles. The result of the MDA for this fit of the peak region

is displayed in the third column of Table 7.1. Higher order multipoles were not included

since the angular smearing and wide angular bins washed out the dominant features of the

distribution. In the full analysis of the 28Si(10Be,10B+γ(1.022 MeV))28Al data, each 2 MeV

energy bin is fit as in the left panel of Figure 7.4. The results of the full MDA are shown in

Figure 7.5.

The results of the RTBA calculation as described in Chapter 3 indicate that below about

30 MeV almost all of the contributions to the IVGMR come from the single particle transition

0d5/2→1d5/2. Illustrated in Figure 7.6, the calculated angular distributions, before smearing,

for the IVGMR are almost identical in shape. As a result, a MDA of the data using individual

single particle contributions to the IVGMR does not change the extracted distribution.
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7.2 Extracted differential cross-sections in 28Al

With the MDA complete, individual components of the spectra can be analyzed. In principle,

multipole contributions greater than ∆L = 2 can contribute to the spectrum, so contributions

from these higher multipoles were effectively absorbed into contributions from ∆L = 2 when

performing the MDA. As such, commentary can only be made on the ∆L = 0 and ∆L = 1

results of the MDA.

Figure 7.7 shows the extracted ∆L = 0 and ∆L = 1 distributions for the

28Si(10Be,10B+γ)28Al reaction. The double-differential cross-sections are plotted in the

angular bin in which they peak. For ∆L = 0, the angular distribution peaks at 0◦, so

the 0.25◦ angular bin is displayed. For ∆L = 1, the angular distribution peaks near 0.8◦,
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Figure 7.7 Extracted ∆L = 0 (monopole) and ∆L = 1 (dipole) double differential cross-
sections for the 28Si(10Be,10B+γ)28Al reaction. Distributions are shown for the experimental
angular bin in which the angular distribution peaks.

EX (28Al) (MeV)
Current Work 9.3
28Si(γ,n) [4] ∼11
28Si(n,p) [92] ∼10
28Si(7Li,7Be) [93] ∼11
28Si(γ,abs) [41] 8.2−12.2

Table 7.3 Comparison of the observed peak position of the extracted ∆L = 1 (dipole)
distribution for the 28Si(10Be,10B+γ)28Al reaction with the peak position of the IVGDR
measured in previous experiments through the 28Si(γ,n) [4], 28Si(n,p) [92], 28Si(7Li,7Be)
[93], and 28Si(γ, abs) [41] reactions. Where necessary, energies relative to the ground state
of 28Si were converted to the ground state of 28Al.

depending on EX(28Al), so the 0.75◦ angular bin is displayed.

The ∆L = 0 monopole distribution in the left panel of Figure 7.7 is assigned to the

IVGMR, since there is no IAS (0~ω,∆L = 0,∆S = 0,∆T = 1) transition in the 28Si→28Al

system as a result of 28Si being a light, stable nucleus in its Jπ = 0+ ground state.

The right panel of Figure 7.7 displays the result for the ∆L = 1 dipole distribution. It

is dominated by a single peak near 9 MeV, with cross-section diminishing with increased

excitation energy. The distribution can be associated with the IVGDR, which has been
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Figure 7.8 Comparison of the measured ∆L = 1 (dipole) distribution for the
28Si(10Be,10B+γ)28Al reaction with the IVGDR distribution measured previously in the
28Si(γ,n) reaction [4].

measured in 28Si and 28Al. Table 7.3 lists the peak energy measured in this experiment,

and the observed energy of the peak for References [4], [92], [93] and [41], where Reference

[41] measured the fine structure of the peak, so the range is the region of observation. The

position of the peak in this experiment agrees with previously measured positions. Figure

7.8 shows the distribution measured in this experiment in the top panel, and the distribution

first measured in Reference [4] for the 28Si(γ,n) reaction. Including location, the shape of

the extracted IVGDR is consistent with previous observations.
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Single Particle Transition dσ
dΩ(q = 0, θcom = 0◦) (mb/sr) IVGMR Strength (fm4) Ratio

0d5/2→1d5/2 9.33 15.4 0.61

0p3/2→1p3/2 1.80 7.34 0.25

0p1/2→1p1/2 1.06 3.67 0.29

0s1/2→1s1/2 0.34 2.20 0.16

Total 11.36 28.62 0.41

Table 7.4 Theoretical DWBA cross-section calculation for q = 0 (no momentum transfer)
and 0◦ scattering angle for each individual state participating in the IVGMR in 28Si. The
normal-modes strength obtained when calculating the OBTD for the DWBA cross-section
is also shown. The ratio of the cross-section to the strength shows that an assumption of
linearity between strength and cross-section does not hold between states.

7.2.1 Comparison with theoretical calculations

As described in Chapters 3 and 4, there are many theoretical techniques available to interpret

the data, though a complete model has not been derived. In this section, RTBA calculations,

as described in Chapter 3, will be compared with the measured IVGMR and IVGDR because

the RTBA is able to fragment strength to more realistic distributions. Also, the data for

the IVGMR will be compared against DWBA cross-sections with OBTD’s calculated in the

normal-modes formalism to determine the percent of the NEWSR observed (see Chapter 4).

Figure 7.9 compares the extracted ∆L = 0 and ∆L = 1 distributions with RTBA calcula-

tions for the IVGMR and IVGDR, respectively. The RTBA calculations determine transition

strength for a point of energy, so the strengths were smeared with Lorentzians of 2 MeV in

width for comparison.

In the case of Figure 7.9(a), the RTBA strengths have been converted to cross-section

by assuming a direct relation between strength and cross-section at 0◦ scattering angle,

similar to studies of GT strength distributions ([29], and references therein). Though there

is reason to assume this proportionality, 7.4 shows that a constant of proportionality does

not hold across states since each particle-hole contribution exhibits a different ratio of cross-
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Strength
Transition NORMOD RTBA

IVGMR 28.62 fm4 31.36 fm4

IVGDR 15.22 fm2 14.67 fm2

Table 7.5 Total predicted strength for the IVGMR and IVGDR as calculated in the normal-
modes and RTBA frameworks.

section to strength. Due to the surface nature of the reaction, and the fragmentation of the

strength to high excitation energy, as shown in the RTBA calculation, the 0d5/2 → 1d5/2

contribution is selected for conversion of the strength to cross-section. In Figure 7.9(b), the

RTBA calculation is presented as its strength.

In Figure 7.9(a), the measured ∆L = 0 distribution is reproduced by the RTBA calcula-

tion, but with a shift up in energy of a few MeV. In the RTBA calculation of the IVGMR,

there appears to be 2 major peaks, located at ∼9 MeV and ∼19 MeV, and it is possible

to determine the particle-hole composition of the strength. For the lower energy peak, the

primary contributor is the 0d5/2 → 1d5/2 transition at 59% of the peak strength. Similarly

for the second peak, the 0d5/2 → 1d5/2 transition participates at 53%. This suggests that

the lower energy region of the ∆L = 0 spectrum is primarily composed of 0d5/2 → 1d5/2

transitions, where the p3/2, p1/2, and 21/2 contributions begin to participate at higher ex-

citation energy. In Figure 7.9(b), the measured ∆L = 1 distribution is reproduced well by

the RTBA calculation. Most notably, the relative shape of the distribution matches nicely

with the observation.

Table 7.5 shows the total strength of the IVGMR and IVGDR as calculated in the normal-

modes formalism using the code NORMOD (see Section 4.3.2.2) and the RTBA. Overall, the

methods determine similar strengths, with the RTBA slightly higher for the IVGMR and

slightly lower for the IVGDR.
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Figure 7.10 compares the DWBA calculation (see Chapter 4) for the IVGMR with the

∆L = 0 distribution to determine the percent exhaustion of the NEWSR (see Chapter 3)

in the measured data. In Figure 7.10(a), the DWBA curve represents the cross-section if

all of the strength were placed at each point along the curve, since in the normal-modes no

information of the strength distribution in energy is given. Assuming the 0d5/2 → 1d5/2

transition comprises almost all of the observed spectrum, the DWBA curve is calculated

with only this single-particle transition.

With the scaling of the DWBA results applied, Figure 7.10(b) compares the cross-section

observed in each energy bin with the DWBA calculated cross-section at the bin’s center to

determine the percent of the NEWSR observed in the bin, since as mentioned above, the

DWBA curve represents the cross-section if all of the strength was placed at that energy. The

cross-section was scaled by a factor of 0.784 to account for effects from exchange and choice of

OMP on the DWBA calculation, as described in Section 7.1.1. Most strength is concentrated

in peaks at 9 and 21 MeV, with sums of 66±36% and 59±32%, respectively. Figure 7.10(c)

shows the running total of Figure 7.10(b). The total exhaustion of the NEWSR observed is

177+136
−100% at 35 MeV.
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Figure 7.10 (a) Extracted monopole distribution at θcom = 0.25◦. The filled histogram
represents the data. The dashed line is the calculated DWBA cross-section for the IVGMR as
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data. (c) Running total of the exhaustion of the NEWSR from (b).
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Chapter 8

Conclusion

8.1 Summary

The (10Be,10B+γ) probe is a powerful tool for the isolation of non-spin-flip transitions since

these transitions are relatively weakly excited. This is especially important since isolation of

the non-spin-flip IVGMR has been difficult for decades due to the lack of a clean non-spin-

transfer charge-exchange probe. Complementary to the (10C,10B+γ) probe from Reference

[20], the addition of the (10Be,10B+γ) probe to the list of available probes for studying

charge-exchange reactions allows for ∆S = 0, ∆T = 1 studies in both the (p, n) and (n, p)

directions.

Using the (10Be,10B+γ) charge-exchange probe, the isovector giant monopole resonance

(IVGMR) in 28Al was measured. The high-resolution, high-efficiency gamma-ray detector

array GRETINA was coupled to the high-resolution spectrometer, the S800, to isolate ∆S =

0, ∆T = 1 events in 28Al. The spectrometer allowed for reconstruction of the excitation

energy and scattering angle in 28Al from the 28Si(10Be,10B+γ) reaction. From this, angular

distribution of the cross-section across the observed excitation energies were generated. The

angular distributions were decomposed into their constituent multipole components using

theoretical cross-sections, calculated in the distorted wave Born approximation formalism.

The ∆L = 0 and ∆L = 1 cross-section distributions were extracted for 0 < EX(28Al) ≤ 35

MeV.
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The extracted ∆L = 1 (dipole) distribution served to illustrate the successful separation

of the multipole components with close agreement to previous measurements of the isovector

giant dipole resonance (IVGDR). Also, close agreement with the predicted strength dis-

tribution from the relativistic time blocking approximation (RTBA) for the IVGDR was

observed.

The extracted ∆L = 0 (monopole) distribution was compared to theoretical calculations.

Reasonable agreement with the RTBA calculation for the IVGMR was observed, though the

predicted peaks appeared with a small shift in excitation energy relative to the measurement.

The measured IVGMR distribution was also compared to the predicted strength calculated

in the normal-modes formalism for determination of the percent exhaustion of the non-energy

weighted sum-rule (NEWSR). The exhaustion of the NEWSR was observed to be 177+136
−100%

up to 35 MeV.

8.2 Outlook

The (10Be,10B+γ) probe was shown to be useful in isolating non-spin-transfer charge-

exchange reactions. However, as is seen in this experiment in the relatively large uncertainty

on the extracted data, higher intensity beams and high-efficiency/high-resolution gamma-

ray detection systems are required. The beam intensity for 10Be will be improved when

FRIB comes online, and will allow studies of the IVGMR in higher mass nuclei, where the

fragmentation of the strength will be less of an issue. Improvements in the gamma-ray

tracking in GRETINA will allow for reconstruction of gamma-ray scattering events for even

higher efficiency and resolution of the detector system. It may even be possible, given 10Be’s

long half-life (t1/2 = 1.4 × 106years) to produce a 10Be primary beam. This would allow
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measurements of higher energy resolution and studies of nuclei of higher mass. In either

case, a higher intensity secondary beam or a primary beam of 10Be, the crucial next step

is measurement of heavier nuclei. Light nuclei are a good first step, but due to structural

effects in light nuclei, strength is fragmented to higher excitation energy.
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